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Abstract – The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, 
with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model 
(DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables 
were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 
1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: 
adaptive resonance theory, fuzzy ARTMap; self-organizing map, SOM; and multi-layer perceptron, MLP. 
Estimated maps were compared with the conventional soil map to calculate omission and commission errors, 
overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling 
density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent 
network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more 
sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as 
a reference to predict soil orders in Serra Gaúcha.

Index terms: appellation of origin, decision tree, digital elevation model, geographic information systems, 
neural network, soil mapping.

Predição de ordens de solos com alta resolução espacial: resposta  
de diferentes classificadores à densidade de amostragem 

Resumo – O objetivo deste trabalho foi avaliar a densidade de amostragem na acurácia de predição de ordens 
de solos, com alta resolução espacial, em área vitícola da Serra Gaúcha. Para isso, utilizou-se modelo digital de 
elevação (MDE) do terreno, base cartográfica, mapa convencional de solos e o programa Idrisi. Sete variáveis 
preditoras foram calculadas e lidas junto com as classes de solo, em pontos aleatoriamente distribuídos, nas 
densidades de 0,5, 1, 1,5, 2 e 4 pontos por hectare. Os dados foram usados para treinar uma árvore de decisão 
(Gini) e três redes neurais artificiais: teoria da ressonância adaptativa, fuzzy ARTMap; mapa auto‑organizável, 
SOM; e perceptron de múltiplas camadas, MLP. Os mapas estimados foram comparados com o mapa de solos 
convencional para calcular erros de omissão e de inclusão, exatidão geral, e erros de quantidade e de alocação. 
A árvore de decisão foi menos sensível à densidade de amostragem e apresentou maior acurácia e consistência. 
O SOM foi a rede neural com menor sensibilidade e maior consistência. O MLP apresentou mínimo crítico e 
maior inconsistência, enquanto fuzzy ARTMap apresentou maior sensibilidade e menor acurácia. Os resultados 
indicam que densidades de amostragem usadas em levantamentos convencionais podem servir de referência para 
estimar ordens de solos na Serra Gaúcha.

Termos para indexação: denominação de origem, árvore de decisão, modelo digital de elevação, sistemas de 
informação geográfica, rede neural, mapeamento do solo.

Introduction

Conventional soil surveys have not been able to 
provide prompt soil information for land-use planning. 
In the last decades, the lack of information led to the 
development of modeling techniques to spatially predict 
soil properties or the occurrence of soil classes in a 

reliable way, broadly referred to as digital soil mapping 
(DSM). According to Lagacherie (2008), DSM can be 
defined as the creation and population of spatial soil 
information systems using numerical models that infer 
spatial and temporal variations of soil properties and 
types based on soil observation and knowledge from 
related environmental variables.
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Early studies began in the 1970s, but DSM 
received great impulse in the 1990s, with the spread 
of technologies such as remote sensing imagery 
(RS), global positioning system (GPS), geographic 
information systems (GIS), and advances in computer 
processing performance. Additionally, the world wide 
web allowed for the exchange of knowledge between 
researchers and the creation of online soil information 
databases, aiming to establish operational DSM systems 
(McBratney et al., 2003; Sanchez et al., 2009).

In the last two decades, successful researches on 
the subject have been reported worldwide. These 
include the application of parametric methods, such as 
logistic regressions, geostatistical analysis and fuzzy 
logic, as well as non-parametric approaches, such as 
machine-learning algorithms (MLA) like decision 
trees, neural networks, and expert systems (Zhou 
et al., 2004; Grinand et al., 2008). However, there are 
no consensus standards or protocols for DSM when 
compared to conventional soil surveys, which have 
well-known protocols for almost a century (Hempel 
et al., 2008).

A critical issue for DSM is the sampling schema, 
since it is the basis to quantify relationships between the 
predictor variables and soil properties or soil classes. 
Zhu (2000), for example, recommends adopting a 
number of samples equal to 30 times the number of 
soil classes to be estimated, as the acceptable lower 
limit. Although there are other studies on sampling 
density (Zhu, 1997; Shi et al., 2004; Gray et al., 2009), 
operational recommendations are still scarce, especially 
for finer scales. As sampling demands substantial 
time and costs to do field work and laboratory 
analysis, which increase with the used scale, sample 
size recommendations are needed to evaluate their 
feasibility and to plan related activities.

Vale dos Vinhedos was the first Brazilian Geografical 
Indication for wine, initially established in the category 
of Indication of Procedence. Currently, the wine sector 
seeks to raise it to the category of appellation of 
origin, which requires detailed surveys of the factors 
that affect vine and wine quality, including soil types 
and properties. A conventional detailed soil survey 
was started a few years ago and is still in progress. 
Nevertheless, the set of fine‑scale spatial and soil data, 
usually not available for most places, provides an 
excellent basis to evaluate methods for DSM using high 
spatial resolution data. Moreover, it gives opportunity 

to apply DSM techniques to solve real challenges, 
since two other geographic indications in Serra Gaúcha 
have already acquired detailed cartographic data and 
are also demanding fine‑scale soil maps. It is expected 
that knowledge gathered at the Vale dos Vinhedos will 
help to speed up future detailed soil surveys in Serra 
Gaúcha.

The objective of this work was to evaluate sampling 
density on the accuracy prediction of soil orders, 
with high spatial resolution, using machine-learning 
algorithms in Serra Gaúcha, Southern Brazil.

Materials and Methods

The experiment was carried out in Vale dos 
Vinhedos, in the wine production region of Serra 
Gaúcha, northeast of the state of Rio Grande do Sul, in 
Southern Brazil. The climate of the region is classified, 
according to Köppen, as Cfb, subtropical with mild 
summer. The mean temperature of the coldest month 
is between -3 and 18°C, and the mean temperature of 
the warmest month is below 22°C, with rainfall evenly 
distributed throughout the year and total annual rainfall 
of 1,736 mm (Normal climatológica, 2008). Geology 
corresponds to the Serra Geral Formation, succession of 
spills of effusive rocks, mainly basalts and andesites. In 
general, the relief is complex, showing large variations 
in elevation, slope, and aspect. Consequently, the 
distribution of soil types across the landscape shows 
high spatial variability, with a relative predominance of 
shallow and stony soils (Flores et al., 1999). The land 
structure is represented by small farms, based mainly 
on vine cultivation, with an average area of vineyards 
per farm of 2.5 hectares.

The study area corresponds to one map sheet of the 
detailed soil survey (in progress) of Vale dos Vinhedos, 
and covers 673.5 ha. Geographic coordinates of the 
bounding box range between 51o34'31.86"W and 
51o33'1.86"W, and 29o10'31.78"S and 29o9'1.78"S.

The following materials were used: a 5 m spatial 
resolution digital elevation model (DEM) and a stream 
network, both extracted from an aerophotogrammetric 
survey at a scale of 1:10,000, and a detailed soil map 
(Sarmento et al., 2008). The soil map was produced 
through conventional soil survey procedures, including 
extensive field work, airphoto interpretation, and soil 
taxonomic classification according to the Brazilian soil 
classification system – SiBCS (Santos et al., 2006). The 
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area contains 155 polygons and 37 individual soil types 
belonging to four soil orders: 10 Argissolos (Ultisols), 16 
Cambissolos (Inceptisols), 4 Chernossolos (Mollisols), 
and 7 Neossolos (Entisols). Calculation of predictor 
variables, spatial analysis, prediction of soil classes, 
and accuracy assessment were done using the software 
Idrisi Taiga GIS (Clark Labs, Worcester, MA, USA).

The first step was the selection of prediction variables. 
Based on local expert knowledge of soil formation 
factors and on data availability, variables correlated 
with variations on moisture regime, erosion and 
deposition of sediments, organic matter concentration, 
and depth of the A horizon were considered. Some of 
the soil formation factors are uniform throughout the 
study area, including major geology units and climate – 
particularly high annual rainfall –, whereas others, such 
as land cover, were not mapped on the spatial resolution 
used in the present work. However, microclimatic 
variables and land use are strongly conditioned by 
relief. In fact, the strong influence of relief on soil 
formation in the evaluated area is well known (Flores 
et al., 1999), indicating that terrain variables should be 
good predictors of soil classes (Florinsky et al., 2002). 
According to Giasson et al. (2011), variables that can 
describe these variations in the region are: elevation, 
slope, aspect, profile curvature, flow accumulation, 
flow direction, and planar distance from streams. The 
first six predictors were calculated directly from the 
DEM, and the last variable was calculated from the 
stream network.

Generation of sampling points was done with random 
spatial distribution, using five sampling densities, 
comprised in the recommended range for detailed 
soil surveys in Brazil (Manual técnico de pedologia, 
2007): 0.5, 1, 1.5, 2, and 4 points per hectare. Since 
soil classification depends on a number of physical 
and chemical characteristics, before sampling, the 
conventional soil map was simplified so that the 
classes stayed coherent with the selected predictor 

variables and could be properly sampled. Soil types 
were grouped to the first taxonomic level (order), 
resulting in a soil map with four classes: Argissolos, 
Cambissolos, Chernossolos, and Neossolos. Then, 
values of predictor variables and soil order, at each 
sampling point, were collected for all sampling 
densities. Grouped soil classes and number of sample 
points per class are shown in Table 1.

Data from sampling points were used to train mLA 
and to predict the occurrence of soil orders in the whole 
study area. Four classification algorithms, based on 
the concept of mLA, were used: three artificial neural 
networks (multi-layer perceptron, MLP; adaptive 
resonance theory, fuzzy ARTMap; and self-organizing 
map, SOM) and a decision tree (Gini). Artificial 
neural networks simulate the operation of the structure 
of neurons and connections of the human brain, 
whereas decision trees simulate the human process of 
abstraction through hierarchical categorization (Lippitt 
et al., 2008). In the training process, 10,000 iterations 
were used, aiming to optimize the algorithm’s structure 
and to reach stability on prediction error.

For accuracy assessment, each predicted soil map 
was compared with the conventional soil map, using 
all pixels of the study area to calculate error matrices 
(Congalton, 1991), and to compute five accuracy 
indicators: omission errors, expressed as the proportion 
of a specific class that was estimated as other classes; 
commission errors, expressed as the proportion of 
different classes included in a specific estimated 
class; overall accuracy, expressed as the proportion 
of correctly‑classified pixels; quantity disagreement, 
which measures the amount of difference between 
the reference map and the estimated map attributed 
to the less than perfect match in the proportions of the 
categories; and allocation disagreement, which measures 
the amount of difference between the reference map 
and the estimated map due to the less than optimal 
match in the spatial allocation of the categories, given 

Table 1. Classes of the grouped soil map (order), according to the Brazilian soil classification system (SiBCS) and to Soil 
Taxonomy, and area, proportion, and number of sample points per class at each sampling density.

SiBCS Soil Taxonomy Area (ha) Proportion (%) Points per hectare
0.5 1 1.5 2 4

Argissolos Ultisols 101.6 15.1 45 113 166 209 419
Cambissolos Inceptisols 281.3 41.8 145 278 396 544 1,036
Chernossolos Mollisols 228.7 34.0 105 204 320 419 888
Neossolos Entisols 61.9  27 49 84 116 233
Total 673.5 100.0 322 644 966 1,288 2,576
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the proportions of the categories in the reference and 
estimated map.

Quantity disagreement and allocation disagreement 
were preferred instead of kappa, which, according 
to Pontius & Millones (2011), provides redundant 
information and does not give guidance on how to 
improve classification. While kappa measures how 
much the agreement is better than random, quantity 
disagreement and allocation disagreement measure 
how much the agreement is less than perfect, providing 
additional information that helps to explain error.

Results and Discussion

The MLP neural network, with 0.5 point per 
hectare, simultaneously showed the lowest omission 
error for Cambissolos and the highest omission error 
for Neossolos and Argissolos (Table 2). However, it 
presented minimum commission error for Neossolos 
and Argissolos (Table 3), since the algorithm could not 
estimate these classes. In this case, the omission error is 

maximized and the commission error is minimized. At 
the same time, predicted classes that incorrectly receive 
pixels from unpredicted classes have their omission 
error reduced and their commission error increased 
(Congalton, 1991; Pontius & Millones, 2011). The 
very low omission error observed for Cambissolos 
indicates that most of the omitted pixels of Neossolos 
and Argissolos were incorrectly allocated to that class.

Considering only the cases in which all classes could 
be estimated, the lowest omission errors for Argissolos 
and Neossolos were found using the Gini decision 
tree with sampling density of four points per hectare. 
Lowest errors for Cambissolos and Chernossolos were 
observed using the MLP neural network, with 1.5 and 
4 points per hectare, respectively. The Gini decision 
tree and MLP neural network also showed the lowest 
mean omission error per density and overall mean 
omission error, whereas the neural networks SOM 
and fuzzy ARTMap had the highest mean omission 
values for both. Mean omission errors per class 
varied among the algorithms, with the lowest value 

Table 2. Omission errors of estimated soil orders using four 
machine learning algorithms and five sampling densities, for 
the three neural networks evaluated and for Gini decision 
tree.

Soil order Points per hectare Mean
0.5 1 1.5 2 4

Fuzzy ARTMap
Argissolos 0.36 0.39 0.38 0.38 0.36 0.37
Cambissolos 0.51 0.48 0.42 0.37 0.28 0.41
Chernossolos 0.67 0.63 0.47 0.44 0.32 0.51
Neossolos 0.95 0.90 0.80 0.76 0.67 0.82
Mean 0.62 0.60 0.52 0.49 0.41 0.53

Self-organizing maps (SOM)
Argissolos 0.72 0.59 0.53 0.56 0.57 0.59
Cambissolos 0.28 0.30 0.26 0.22 0.20 0.25
Chernossolos 0.33 0.34 0.29 0.26 0.25 0.29
Neossolos 0.83 0.79 0.78 0.76 0.74 0.78
Mean 0.54 0.50 0.47 0.45 0.44 0.48

Multi-layer perceptron (MLP)
Argissolos 1.00 0.59 0.76 0.65 0.71 0.68
Cambissolos 0.04 0.30 0.09 0.22 0.11 0.15
Chernossolos 0.32 0.34 0.30 0.22 0.21 0.28
Neossolos 1.00 0.79 0.74 0.70 0.74 0.74
Mean 0.18 0.50 0.47 0.45 0.43 0.43

Gini decision tree
Argissolos 0.54 0.46 0.42 0.39 0.26 0.41
Cambissolos 0.36 0.25 0.31 0.23 0.32 0.29
Chernossolos 0.28 0.32 0.26 0.25 0.28 0.28
Neossolos 0.56 0.55 0.55 0.51 0.50 0.53
Mean 0.43 0.39 0.38 0.35 0.34 0.38

Table 3. Commission errors of estimated soil orders 
using four machine learning algorithms and five sampling 
densities, for the three neural networks evaluated and for 
Gini decision tree.

Soil order Points per hectare Mean
0.5 1 1.5 2 4

Fuzzy ARTMap
Argissolos 0.82 0.80 0.76 0.72 0.63 0.75
Cambissolos 0.30 0.29 0.27 0.26 0.23 0.27
Chernossolos 0.30 0.29 0.22 0.23 0.20 0.25
Neossolos 0.73 0.77 0.64 0.59 0.53 0.65
Mean 0.54 0.54 0.47 0.45 0.40 0.48

Self-organizing map (SOM)
Argissolos 0.68 0.68 0.62 0.56 0.54 0.62
Cambissolos 0.37 0.32 0.30 0.30 0.29 0.31
Chernossolos 0.33 0.30 0.28 0.26 0.25 0.28
Neossolos 0.68 0.63 0.55 0.50 0.53 0.58
Mean 0.52 0.48 0.44 0.41 0.40 0.45

Multi-layer perceptron (MLP)
Argissolos 0.00 0.68 0.54 0.57 0.50 0.57
Cambissolos 0.42 0.30 0.35 0.29 0.31 0.33
Chernossolos 0.34 0.22 0.20 0.26 0.19 0.24
Neossolos 0.00 0.51 0.47 0.48 0.33 0.45
Mean 0.38 0.43 0.39 0.40 0.39 0.39

Gini decision tree
Argissolos 0.65 0.56 0.57 0.46 0.57 0.56
Cambissolos 0.28 0.24 0.22 0.22 0.16 0.22
Chernossolos 0.22 0.22 0.23 0.20 0.19 0.21
Neossolos 0.64 0.61 0.60 0.56 0.55 0.59
Mean 0.45 0.41 0.40 0.36 0.37 0.40
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for Argissolos found by the fuzzy ARTMap neural 
network; for Cambissolos, by the MLP neural network; 
for Chernossolos, simultaneously by the MLP neural 
network and Gini decision tree; and for Neossolos, by 
the Gini decision tree (Table 2).

Regarding commission errors, except when all 
classes could not be estimated, the lowest values for 
Argissolos, Cambissolos, and Chernossolos were found 
using the Gini decision tree with sampling densities of 
two, four, and four points per hectare, respectively. For 
Neossolos, the lowest commission error was obtained 
using the MLP neural network with four points per 
hectare. The MLP neural network and Gini decision tree 
also showed the lowest mean commission errors per 
density and overall mean commission error, whereas 
the neural networks SOM and fuzzy ARTMap had the 
higher mean values for both. Lowest mean commission 
errors per class for Argissolos, Cambissolos, and 
Chernossolos were found by the Gini decision tree, and 
for Neossolos by the MLP neural network (Table 3).

Omission and commission errors tended to decrease 
as sampling density increased (Tables 2 and 3). The 
relationship between predictor variables and classes to 
be estimated can be better fitted by making decision 
rules more consistent and reducing the confusion 
between classes. As observed by Lippitt et al. (2008), 
this is particularly important for classes with small 
extent, which can be subsampled at lower sampling 
densities.

In almost all cases, Cambissolos and Chernossolos 
were the classes with the lowest omission and  
commission errors. This was expected, since these  
classes were more likely to be correctly mapped as 
they cover most of the study area, i.e., 41.8 and 34%, 
respectively. However, this reveals some inadequacy 
of the random sampling scheme adopted in the present 
study. According to Pal & Mather (2003), not only the 
sample size is important for classification algorithms, 
but also the sampling schema. Schmidt et al. (2008) 
reported that, for small classes, proportional sampling 
can return better results than a random schema. This 
may be the case for Neossolos and Argissolos, whose 
extension corresponds to only 9.1 and 15.1% of the 
study area, respectively. At lower sampling densities, 
the number of random samples within classes, with 
low occurrence, may not be sufficient to define the 
appropriate decision rules (Table 1).

The lowest overall accuracy was found for the neural 
network fuzzy ARTMap with sampling density of 0.5 
point per hectare, while the highest and identical value 
was obtained for both Gini decision tree with 2 points 
per hectare and for MLP neural network with 4 points 
per hectare (Table 4). In fact, the Gini decision tree 
and MLP neural network performed similarly for all 
sampling densities, with overall accuracy even above 
60% and higher than that for the fuzzy ARTMap and 
SOM neural networks. However, overall accuracy for 
the MLP neural network with 0.5 point per hectare is 
misleading because the algorithm completely omitted 
two classes. Since the extent of the predicted classes 
comprises more than 75% of the study area (Table 1), 
even with the omission of two classes, the percentage of 
correctly classified pixels was still high. This indicates 
how overall accuracy can lead to misinterpretation of 
map reliability if it is not analyzed together with other 
indicators, such as omission and commission errors.

In this sense, quantity disagreement and allocation 
disagreement provide further information about error, 
as they decompose the overall disagreement, which 
can be defined as 1 minus the overall accuracy, in 
two components related to the proportion and to the 
spatial allocation of the estimated classes, respectively  
(Pontius & Millones, 2011). In general, the 
contribution of quantity disagreement (Figure 1 A) for 
the overall error was smaller than that of the allocation 
disagreement (Figure 1 B), except for the fuzzy 
ARTMap neural network. For this algorithm, quantity 
disagreement was the major component of error and, in 
most cases, it was clearly above the other algorithms. 
Furthermore, its steep curve (Figure 1 A) indicates that 
quantity disagreement is highly sensitive to sampling 
density.

Among all algorithms, the MLP neural network 
was the less consistent, showing an unstable, 

Table 4. Overall accuracy (%) of estimated maps using four 
machine learning algorithms and five sampling densities, for 
the three neural networks evaluated and for Gini decision 
tree.

Machine-learning algorithm Points per hectare Mean
0.5 1 1.5 2 4

Fuzzy ARTMap 42 45 53 57 66 52.6
Self organizing map (SOM) 58 60 64 66 68 63.2
Multi layer perceptron (MLP) 63 65 68 67 71 66.9
Gini decision tree 62 67 67 71 69 67.2
Mean 54.0 59.3 63.0 65.3 68.5 -
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nonlinear response both in quantity disagreement 
and in allocation disagreement. As the number of 
samples increased, an alternation between quantity 
and allocation was observed. At times, the algorithm 
did not estimate the correct proportion of classes 
and, at others, the estimated proportion was correct 
but many pixels were misallocated. Omission errors 
(Table 2) and commission errors (Table 3) did not 
reveal this inconsistence. Overall accuracy (Table 4), 
instead, suggests a better performance, which shows 
the importance of considering these two components 
of error, as proposed by Pontius & Millones (2011), 
when evaluating classifiers.

The SOM neural network and Gini decision tree 
had similar performance, showing the lowest quantity 
disagreement among all algorithms. Their flat curves 
(Figure 1 A) also indicate a low dependence on the 
number of samples for this component of error. 
Allocation disagreement, however, was higher than 

that for the fuzzy ARTMap and MLP neural networks, 
showing a weak response on sampling density 
(Figure 1 B), with the Gini decision tree presenting 
lower values. Both the SOM neural network and Gini 
decision tree were relatively stable in relation to the 
number of samples and tended to predict classes with 
the correct proportion, but misallocated some pixels. 
Visual analysis showed that part of the misallocations 
occurred close to the boundaries of classes. According 
to Grimm & Behrens (2010), this is expected because 
the conventional reference map was drawn by hand, 
whereas algorithms used fixed rules to predict classes 
on the whole map. As a consequence, some discordance 
is common near the boundaries, and, in these cases, 
prediction may be more reliable than the conventional 
map. 

Regarding the magnitude for omission and 
commission errors and overall accuracy, values were 
similar to those reported by Coelho & Giasson (2010) 
for decision trees in predicting soil classes from terrain 
variables at a coarser spatial resolution. Values found 
for overall accuracy in the present work were higher 
than those obtained by Giasson et al. (2011), when 
predicting soil classes with high spatial resolution 
from terrain variables using several decision trees. 
Both studies were developed in similar subtropical 
conditions, but used a fixed number of samples. Zhao 
et al. (2009) obtained overall accuracy above 80% 
using neural networks to predict sand, clay, and silt 
contents with high spatial resolution, whereas the best 
value found in the present work was 71%, for the MLP 
neural network and Gini decision tree.

In some aspects, these results partially disagree with 
Lippitt et al. (2008), who reported better performance 
for the SOM neural network, when compared to MLP, 
in classifying remote sensing data. In the present 
work, MLP showed higher overall accuracy than 
SOM (Table 4). This may be due to the intrinsic 
characteristics of the predictor and estimated dataset, 
as well as to differences in the configuration of the 
neural network structure used. However, SOM was 
more consistent in terms of quantity disagreement 
and allocation disagreement (Figure 1) and, therefore, 
should be preferred (Lippit et al., 2008). This results 
is in accordance with Srinivasulu & Jain (2006), who 
recommend that performance evaluation should be done 
using a wider variety of indicators rather than relying 
only on a few general statistics, usually employed.

Figure 1. Quantity (A) and allocation disagreement (B) of 
estimated maps using four machine-learning algorithms and 
five sampling densities. ARTMap, fuzzy adaptive resonance 
theory; MLP, multi-layer perceptron; SOM, self-organizing 
map; DT, Gini decision tree.
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Lippitt et al. (2008) also observed that under optimal 
sampling, with a high number of samples, different 
classifiers usually show low and close error values 
simultaneously for a specific dataset. In this case, 
the number of samples probably is near a limit from 
which increasing sampling density will not add useful 
information and, moreover, can generate overfitting 
(Hjort & Marmion, 2008). This may be valid for the  
Gini decision tree, whose overall accuracy decreased 
and whose commission errors and quantity disagreement 
increased at the highest sampling density. The sampling 
density of four points per hectare matches the upper 
limit of the recommended range of field observations 
for detailed soils surveys in Brazil (Manual técnico de 
pedologia, 2007). Therefore, conventional soil survey 
sampling schemas may be a helpful guide to drive field 
data collection for DSM, at least for detailed scales as 
used in the present study.

This is relevant when thinking of operational 
procedures for DSM, since the sampling strategy 
is a vital issue for the quality of the training data. 
The more representative samples are introduced 
to a classification process, the more accurate and 
reliable results will be produced (Kavzoglu, 2009). 
In the present work, an available soil map was used 
as reference data, which allowed evaluating the 
algorithm's performance in response to the number 
of samples aiming future applications; however, in 
practice, most samples must be collected on the field. 
The challenge is to obtain a representative sample 
set large enough so that no relevant information gets 
lost, but as sparse as possible in order to save labor, 
time, and costs. In this case, representative means that 
both size and quality of the sample data are equally 
important. Therefore, knowledge on the performance, 
sensitivity, and reliability of classification algorithms 
is important to define appropriate sampling (Schmidt 
et al., 2008; Kavzoglu, 2009).

In general, the Gini decision tree was less sensitive 
to sampling density than the three neural networks 
used, and the fuzzy ARTMap neural network showed 
the highest sensitivity among all algorithms. For 
the MLP and SOM neural networks, some indicators 
were contradictory. Omission and commission errors 
and overall accuracy indicate that the MLP neural 
network performed better than SOM, but MLP showed 
a critical minimum for sampling density below which 
it could not estimate all classes. However, quantity 

disagreement and allocation disagreement indicated 
that the SOM neural network was the most consistent 
among all used algorithms, whereas MLP was quite 
inconsistent. Since the Gini decision tree yields higher 
accuracies with lower sampling densities, it seems 
to be the most advantageous choice for predicting 
occurrence of soil orders, at high spatial resolution, 
in the study area.

Disregarding differences on algorithm performance, 
all estimated maps showed more spatial details than 
the conventional soil map used as a reference, which 
agrees with previous studies (Zhu, 2000; Hempel 
et al., 2008). This was expected, since conventional 
soil maps are restricted to a minimum map 
delineation size. In Brazil, the minimum mappable 
area for detailed soil surveys is set to 1.6 ha (Manual 
técnico de pedologia, 2007). However, in the present 
study, the classification algorithms predicted smaller 
spatial units, since prediction was done on a pixel 
with 5 m of spatial resolution. Once a prediction 
model is fitted using the selected variables, it is then 
uniformly applied to the whole area to be mapped. 
In conventional surveys, unvisited places must be 
inferred from soil-landscape relations observed at 
other locations, which is a less consistent, subjective 
process. Therefore, in many cases, predicted classes 
may be more reliable.

Estimated soil classes provide useful information 
for practical application to viticulture in Serra Gaúcha, 
Southern Brazil. Given the annual rainfall in the region, 
soils with good internal drainage, low depth, and 
low organic matter content are preferred to produce 
high quality wines. Soil orders allow inferring some 
soil properties. As vineyards are cultivated in small 
parcels, decisions need to be made on a compatible 
spatial resolution basis. It is preferable to have soil 
orders with good accuracy and consistence than to 
have more specific, but less reliable classes. However, 
it is necessary to seek other sampling schemes and 
predictor variables, which may help to improve the 
classification of soils in Serra Gaúcha.

Conclusions

1. Sampling density affects the performance of 
machine-learning algorithms to predict soil orders, 
and accuracy tends to improve with the increase of the 
number of samples.
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2. The Gini decision tree performs better and is less 
sensitive to sampling density than the artificial neural 
networks, in predicting soil orders at high spatial 
resolution, in Serra Gaúcha, Southern Brazil.

3. Sampling densities used in conventional soil 
surveys can serve as a reference to predict soil orders 
with digital soil mapping at high spatial resolution in 
Serra Gaúcha.
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