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Abstract – The objective of this work was to assess the degree of multicollinearity and to identify the variables 
involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), 
yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were 
used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation 
of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first 
model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the 
direct and maternal additive and non-additive effects. The second model (R) included all the effects of the 
RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits 
considered, with VIF values of 1.03–70.20 for RM and 1.03–60.70 for R. Collinearity increased with the 
increase of variables in the model and the decrease in the number of observations, and it was classified as weak, 
with condition index values between 10.00 and 26.77. In general, the variables associated with additive and 
non-additive effects were involved in multicollinearity, partially due to the natural connection between these 
covariables as fractions of the biological types in breed composition. 

Index terms: Bos taurus x Bos indicus, animal breeding, beef cattle, correlation matrix, crossbreeding, variance 
inflation factor.

Grau de multicolinearidade e variáveis envolvidas  
na dependência linear em modelos aditivo‑dominantes

Resumo – O objetivo deste trabalho foi avaliar o grau de multicolinearidade e identificar as variáveis envolvidas 
na dependência linear em modelos aditivo‑dominantes. Foram utilizados dados de peso ao nascimento 
(n=141.567), peso ao ano (n=58.124) e perímetro escrotal (n=20.371) de bovinos de corte compostos Montana 
Tropical. O diagnóstico de multicolinearidade foi baseado no fator de inflação de variância (VIF) e no exame 
dos índices de condição e dos autovalores da matriz de correlações entre as variáveis explanatórias. O primeiro 
modelo estudado (RM) incluiu o efeito fixo de classe de idade da mãe ao parto e as covariáveis associadas aos 
efeitos aditivos e não aditivos diretos e maternos. O segundo modelo (R) incluiu todos os efeitos do RM, exceto 
os efeitos aditivos maternos. Detectou-se multicolinearidade em ambos os modelos para todas as características 
consideradas, com valores de VIF de 1,03–70,20, para RM, e de 1,03–60,70, para R. As colinearidades 
aumentaram com o aumento de variáveis no modelo e com a redução no volume de observações, e foram 
classificadas como fracas, com valores de índice de condição entre 10,00 e 26,77. Em geral, as variáveis 
associadas aos efeitos aditivos e não aditivos estiveram envolvidas em multicolinearidade, parcialmente em 
razão da ligação natural entre essas covariáveis como frações dos tipos biológicos na composição racial. 

Termos para indexação: Bos taurus x Bos indicus, melhoramento animal, bovino de corte, matriz de correlação, 
cruzamento, fator de inflação da variância.

Introduction

In animal breeding studies, an obstacle to obtaining 
reliable results is the presence of linear correlations 
between explanatory variables, which is defined as 

multicollinearity. Multicollinearity is caused mainly by 
physical restrictions in the model or population, due to 
sampling techniques or to a model with excessive terms 
(Mason et al., 1975). In this situation, the ordinary 
least squares method – an important methodology 
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used to estimate genetic parameters – yields unstable 
regression coefficients with large standard errors, 
leading to erroneous inferences (Bergmann & 
Hohenboken, 1995). Collinearity also makes the model 
outputs sensitive to changes in the database and to the 
addition or reduction of variables in the model (Belsley, 
1991). Moreover, it results in high variances, which are 
detrimental to the use of hypothesis tests for regression 
coefficients, estimation, and prediction (Mansfield & 
Helms, 1982).

Problems related to multicollinearity in models for 
estimation of genetic effects in crossbred populations 
were reported in several studies (Cassady et al., 2002; 
Roso et al., 2005a; Pimentel et al., 2006; Toral et al., 
2009; Lopes et al., 2010). Rodríguez‑Almeida et al. 
(1997), in a study about direct and maternal additive 
effects for birth and weaning weights in multiracial 
populations, identified the presence of multicollinearity 
between direct and maternal heterosis, and between 
direct and maternal additive effects of the same 
biological type. Similarly, Roso et al. (2005b), 
working with purebred and crossbred animals from 
Angus, Blond d’Aquitaine, Charolais, Gelbvieh, 
Hereford, Limousin, Maine‑Anjou, Salers, Shorthorn, 
and Simmental breeds, estimated high correlations 
between maternal dominant and direct epistatic effects 
as well as between direct and maternal additive effects. 
In those cases, multicollinearity was responsible for 
an overestimation of variance components, a bias in 
estimates of genetic effects, and greater standard errors 
associated to regression coefficients. Consequently, 
the efficiency of selection and crossbreeding strategies 
based on these results was affected.

The objective of this work was to assess the degree of 
multicollinearity and to identify the variables involved 
in linear dependence relations in additive-dominant 
models.

Materials and Methods

Data of birth weight (BW), yearling weight (YW), 
and scrotal circumference (SC) from 149,469 animals 
of Montana Tropical breed born between 1994 and 
2008 were used (Table 1). These individuals are 
progenies of 92,729 dams and 853 sires, providing 
genetic information from three generations (Brinks 
et al., 1961). The database is formed by animals reared 
in Brazil and Uruguay, and kept in tropical pastures, 
mostly in acid soils with Urochloa spp. grass. 

Salt and mineral supplementation were given to the 
animals during all experimental period. Animals were 
grouped into contemporary groups (CG) that considered 
year of birth, herd, management group within herd, 
and sex. After initial selection, only animals with valid 
measurements and parentage information were kept in 
the database. Furthermore, records from the CG with less 
than five animals with valid measurements, with progenies 
of only one sire or formed by individuals with only one 
breed composition were deleted from the database.

Since Montana Tropical is a multibreed population, the 
individuals from the different breed compositions were 
grouped according to the NABC system (Ferraz et al., 
1999; Mourão et al., 2007), in which breeds are classified 
into four biological types. The biological type N included 
Bos indicus breeds, such as Gyr, Guzerat, Indubrazil, 
Nellore, Tabapuan, Boran, and other Zebu breeds. The 
biological type A is characterized by Bos taurus cattle 
adapted to the tropics by natural or artificial selection, 
and descent of animals introduced by the colonizers, as, 
for example, Bonsmara and Belmont Red. The biological 
type B is formed by Bos taurus breeds with British origin, 
like Angus, Devon, and Hereford. The biological type C 
is typified by Bos taurus breeds from continental Europe, 
including Charolais, Limousin, and Simmental (Table 2).

Two models were considered. The first one, 
denominated RM, included the fixed effects of dam age 
class at calving: AOD1 (less than 27 months of age), 
AOD2 (between 27 and 41 months), AOD3 (from 42 to 
59 months), AOD4 (between 60 and 119 months), AOD5 
(between 120 and 143 months), AOD6 (from 144 to 
167 months), and AOD7 (more than 168 months). The 
covariates were associated to the direct (BTA, BTB, 
and BTC) and maternal (MBTA, MBTB, and MBTC) 
additive effects of the biological types and to the 
non‑additive effects of direct (NxA, NxB, NxC, AxB, 
AxC, and BxC) and maternal (HM) heterozygosity. 
The second model, denominated R, considered the 
same effects of RM, with the exception of the maternal 

Table 1. Number of observations, mean, standard deviation, 
and minimum and maximum values for birth weight, 
yearling weight, and scrotal circumference.
Trait Observations Mean Standard  

deviation
Minimum Maximum

Birth weight (kg) 141,567   32.38   4.090   23.00   42.00
Yearling weight (kg)   58,124 268.53 47.806 137.90 400.90
Scrotal circumference (cm)   20,371   28.00 3.90   17.00   39.00
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additive effects. For scrotal circumference, the age of 
the animal at measurement was also included in the 
models.

Coefficients for direct (BTA, BTB, and BTC) and 
maternal additive effects (MBTA, MBTB, and MBTC) 
of biological types were equal to the proportion of each 
biological type in the breed composition of the calf 
and in the breed composition of the dam, respectively. 
Because the sum of the proportions of biological types 
is equal to one, direct and maternal additive effects of 
the biological type N were excluded from the statistical 
models. The same strategy was adopted for dam age 
class at calving. For this covariate, the fourth class 
(AOD4) was also excluded.

The non-additive effects of heterozygosity 
were obtained by a linear relationship to the 
coefficients of direct heterozygosity (HD) and 
maternal total (HM), which were calculated by 
the following equations (Roso et al., 2005b), 
 
         and  
 
in which: the number 4 on top of the summation sign 
is the number of biological types (N, A, B, C); and 

Si, Di, MGSi, and MGDi are the fractions of the ith 
biological type of sire, dam, grandsire, and granddam, 
respectively.

Multicollinearity diagnostics was based on the 
variance inflation factor (VIF) and on the study of 
the condition indexes (CI) and eigenvalues from the 
correlation matrix among explanatory variables, all 
obtained through the Proc Reg procedure from the 
statistical software SAS.

The variance inflation factor (VIF) for the 
predictor variable Xi was obtained by the equation  
VIFi = 1/(1 - Ri

2), in which: Ri
2 is the multiple 

determination coefficient for the linear regression 
of Xi on the other covariates. The VIF describes the 
increase in the coefficient variance in the presence of 
multicollinearity (Freund & Littell, 2000). Therefore, 
the VIF was used to distinguish which covariates 
are possibly involved in quasi-dependence relations. 
Generally, values greater than ten for the covariates in 
the model suggest the existence of multicollinearity as 
the cause of estimation problems, such as ambiguity 
in the identification of important predictor variables, 
direction and magnitude of regression coefficients 
contrary to the prior expectation or without biological 

Table 2. Number of observations for birth weight, yearling weight, and scrotal circumference in each genetic group based 
on the NABC system.

Necessary condition Obsevations
Birth weight Yearling weight Scrotal circumference

3/4 Genetic group
60%< N <90% 1,901 616 114
60%< A <90% 47 16 3
60%< B <90% 2,836 843 311
60%< C <90% 187 35 4

Montana Tropical
18.75< N <31.25% and 18.75< A <31.25% and 18.75< B <31.25% and 18.75< C <31.25% 10,766 5,795 2,709
18.75< N <31.25% and 18.75< A <31.25% and 43.75< B <56.25% and C <6.25% 2,891 1,574 667
18.75< N <31.25% and 43.75< A <56.25% and B< 6.25% and 18.75< C <31.25% 11,225 5,733 2,438
N <37.25% and 12.50< A <87.50% and B ≤75% and C ≤75% and (N+A) ≥25% and (B+C) ≤75% 50,804 25,440 11,660

Purebred
N ≥ 90% 5,841 192 93
A ≥ 90% 294 61 9
B ≥ 90% 2,034 509 170
C ≥ 90% 2 -(1) -

F1

40≤ N ≤60% and 40≤ A ≤60% 2,070 544 104
40≤ N ≤60% and 40≤ B ≤60% 38,558 12,880 1,367
40≤ N ≤60% and 40≤ C ≤60% 5,072 1,430 176

Other genetic groups(1)

Every breed composition that does not comply with the conditions above 7,039 2,456 546
(1)No animal with valid measurements for this trait complies with the criteria of the respective genetic group.
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significance, and unstable estimates of regression 
coefficients (Chatterjee & Hadi, 2006).

The determinant of the correlation matrix among 
the explanatory variables is equal to the product of the 
eigenvalues λi. In the presence of multicollinearity, 
these eigenvalues and, consequently, the determinant 
are small. The condition index is calculated as  
CI = (λmax/λi)0.5, in which λmax is the largest eigenvalue 
and   λi is the ith eigenvalue of the correlation matrix. 
Therefore, high CI values are indicators of dependence 
between the covariates because   λi will be close to zero. 
Based on this, the CI was used to determine the number 
of collinearities in the model. CI values between 10 
and 30 indicate weak multicollinearity, whereas CI 
values greater than 30 suggest strong multicollinearity 
(Belsley, 1991).

To detect which covariates are involved in linear 
dependences, the decomposition of variance associated 
to the eigenvalues was carried out according to 
Belsley (1991): Var (β̂) = σ2(X'X)-1 = σ2VΛ‑1V', 
in which: σ2 is the estimated residual variance; V 
are the eigenvectors of the matrix; and Λ are the 
eigenvalues of the diagonal matrix. If V = vij is the 
variance of the ith element of β, the variance of each 
parameter estimate can also be defined as the sum of 
the p components, with each number associated with 
an eigenvalue, as follows:

 

in which p is the number of explanatory variables. 
Because the eigenvalues are in the denominator, the 
variance components associated with linear dependences  
(small λj) will be relatively high compared with the 
other components. Therefore, a high proportion of 
two or more coefficients related to small eigenvalues 
shows that the corresponding dependences are causing 
problems.

With tij = vij
2/λj and ti =          tij, the proportion of variance 

 
of the ith regression coefficient associated with the jth 
component of this decomposition will be obtained by 
the equation πij = tij/ti, which i = 1, 2, ..., p. To detect 
multicollinearity, Belsley et al. (2004) recommend the 
identification of the eigenvalues with CI greater than 30. 
The variables with variance decomposition proportion 
(πji) greater than 0.5 for each of these eigenvalues are 
candidates to linear dependence.

Results and Discussion

Considering the RM model for birth weight (Figure  
1 A), BTA, BTB, BTC, MBTB, MBTC, NxB, and NxC 
are probably involved in quasi-dependence relations, 
since they presented VIF greater than 10. Similarly, 
the covariates BTA, BTB, BTC, MBTB, MBTC, NxA, 
NxB, NxC, AxB, AxC, and BxC, for yearling weight 
(Figure 1 B), may be involved in multicollinearity, 
as well as BTA, BTB, BTC, MBTB, MBTC, NxA, 
NxB, NxC, AxC, and BxC for scrotal circumference  
(Figure 1 C).

With the reduction of covariates included in the 
analysis model (model R), a decrease was observed in 
the number of covariates involved in multicollinearity 
and in the VIF values. For birth weight, only BTC 
showed a VIF value greater than 10. For yearling 
weight, the covariates BTA, BTC, NxC, and AxC 
showed VIF values greater than the established 
threshold, whereas, for scrotal circumference, this was 
observed for the covariates BTC, NxC, AxC, and BxC. 
This result was already expected, since in the presence 
of multicollinearity the results are sensible to changes 
in the model and in the database (Belsley, 1991). 
Moreover, the exclusion of variables from the model is 
one alternative to mitigate multicollinearity effects on 
the results (Mason et al., 1975).

The same behavior was observed in the number 
of collinearities identified by CI values. For the RM 
model, two weak collinearities (CI=12.61 and 18.76) 
for birth weight, four weak collinearities (CI=10.00, 
15.02, 19.79, and 26.77) for yearling weight, and 
three weak collinearities (CI=11.93, 18.33, and 24.73) 
for scrotal circumference were detected. Considering 
the R model, the following were observed: one weak 
collinearity (CI=11.28) for birth weight, two weak 
collinearities (CI=11.02 and 22.12) for yearling weight, 
and one weak collinearity (CI=21.17) for scrotal 
circumference. These CI values were associated with 
eigenvalues ranging from 0.01 to 0.03.

From the decomposition of the variance regression 
coefficients related to the largest condition index 
(CI=18.76) observed in the RM model for birth 
weight trait, BTB (π=0.69), MBTB (π=0.83), MBTC 
(π=0.68), and NxC (π=0.67) may have formed a linear 
dependence relation. Considering the second largest 
condition index (CI=12.61), the covariates BTC 
(π=0.55) and NxC (π=0.53) could be involved in a 
linear relationship. For the R model and CI equal to 

p

Σ
j=i
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11.28, the covariates C (π=0.97), NxC (π=0.90), AxC 
(π=0.70), and BxC (π=0.65) showed higher values 
than the threshold (π=0.5), which indicates a possible 
collinearity between these variables.

Similarly, for yearling weight with the RM model, 
the covariates BTC (π=0.71) and NxC (π=0.82), 
considering CI equal to 26.77, and BTA (π=0.81) 
and AxB (π=0.58), considering CI equal to 15.02, 
could be involved in linear relationships. For the 
collinearities identified by the condition indexes 
equal to 10.00 and 19.79, no variances with values 
above 0.5 were observed. However, for CI equal to 
19.79, the covariates showed proportions of variance 
decomposition close to this threshold. Because this 
threshold value is empirical, the covariates MBTB 
(π=0.40), NxB (π=0.43), and AxC (π=0.46) could 
also be involved in multicollinearity. Considering the 
R model, the two weak collinearities identified by CI 
equal to 22.12 and 11.02 were represented by: BTC 
(π=0.98), NxC (π=0.88), AxC (π=0.92), and BxC 
(π=0.85); and BTA (π=0.79), BTB (π=0.64), and NxB 
(π=0.59), respectively.

The following covariates: BTC (π=0.90), NxC 
(π=0.83), AxC (π=0.59), and BxC (π=0.62); MBTB 
(π=0.62) and MBTC (π=0.56); and BTA (π=0.67) and 
AxB (π=0.61) were responsible for the collinearities 
identified by the condition indexes equal to 24.73, 
18.33, and 11.93, respectively, obtained with the RM 
model for the scrotal circumference trait. Considering 
the R model, the single collinearity detected by the CI 
analyses, with a value of 21.17, was probably formed 
by the covariates BTC (π=0.98), NxC (π=0.84), AxC 
(π=0.94), and BxC (π=0.88).

The fixed effect of dam age class at calving (AOD) 
and the covariate of maternal heterozigoty (HM) were 
not involved in multicollinearity, since these variables 
were not detected in linear dependence relations nor by 
VIF or variance‑decomposition proportions associated 
with the largest values of CI.

Multicollinearity can be a consequence of deficient 
sample data or of interrelationships among the variables 
that are inherent to the process under investigation 
(Chatterjee & Hadi, 2006). In these situations, not all 
combinations of predictor variables are represented by 
the data and, without data collected under all possible 
conditions, the effects of individual variables cannot 
be determined. Specifically for the present study, 
these circumstances occur due to the imbalance in 
the number of individuals in each genetic group, the 
restrictions imposed on breeding composition of the 
Montana Tropical breed (Table 2), and the natural 
connection between additive and non-additive effects, 

Figure 1. Variance inflation factor (VIF) for the explanatory 
covariates considered in the design matrix X of the models 
RM (■) and R (■) for birth weight (A), yearling weigth  
(B), and scrotal circumference (C). The dotted line (VIF>10) 
is an indicative of involvement in collinearity. AOD1 to 
AOD7 are the age classes of dam at calving; BTA, BTB, and 
BTC are the additive effects associated with the individual 
biological composition types for A, B, and C, respectively; 
MBTA, MBTB, and MBTC are the maternal additive effects 
associated with the maternal biological composition types 
for AM, BM, and CM, respectively; NxA, NxB, NxC, AxB, 
AxC, and BxC are the direct heterozygosity; and HM is the 
maternal total heterozygosity.
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since this is a crossbred population and the fraction 
of a biological type in the animal breed composition 
depends on the proportions from the other biological 
types. As an example, no purebred animals from 
biological type C were measured for yearling weight 
and scrotal circumference, and only two individuals 
from this genetic group were considered for birth weight 
analyses. Therefore, no performance information was 
observed in the sample when BTC was high and the 
fractions of the biological types A, B, and N were low. 
Similarly, it is not possible to obtain records when 
the fractions of biological types are all high or low, 
given that the sum of these proportions must be equal 
to one. As a result, independently of the diagnostic 
method used, the variables related to the additive and 
non-additive effects were detected as involved in a 
linear dependence relation, which was also reported 
by Rodríguez-Almeida et al. (1997) and Roso et al. 
(2005a, 2005b).

Based on multicollinearity causes, one solution 
to mitigate this regression problem is to collect 
additional data, so that more combinations among 
the explanatory variables are represented (Chatterjee 
& Hadi, 2006). In fact, an increase was observed in 
the degree of collinearity with the reduction in the 
amount of records by the comparison of VIF and 
CI values in the analyses for scrotal circumference 
and birth weight, which confirms the validity of this 
strategy. In this case, when multicollinearity is related 
to additive and non-additive effects, the additional data 
should involve representative individuals of several 
breed compositions and arrangements of biological 
types. However, it is often not possible to collect more 
data because of constraints on budget, time, and staff. 
Differences in requirements and production related to 
the diversity of animal size and growth rate make it 
difficult to maintain and sell cattle from diverse breed 
compositions in a same herd. Moreover, not all breeds 
can be used for beef production in Brazilian conditions 
of management and climate. Therefore, it is fairly 
difficult to ensure a balanced population for genetic 
analysis.

Another option to minimize multicollinearity 
complications in regression analysis is to reduce the 
number of covariates in the model. The means of VIF 
for the RM model were 8.66, 18.52, and 14.60 for birth 
weight, yearling weight, and scrotal circumference, 
respectively; whereas for the R model, these means 

were 3.99, 10.81, and 9.40, representing a reduction, in 
average, of 44% in the VIF mean due to the elimination 
of maternal additive effects from the model. However, 
this is not suitable, since these variables are important 
sources of variation for the traits. Furthermore, estimates 
of additive and non-additive genetic effects are useful 
for cross planning in the genetic improvement of traits 
of economic interest. Williams et al. (2010) reported 
direct and maternal breed effects for birth weight 
ranging from -0.5 to 10.1 kg and from -7.2 to 6.0 kg, 
respectively, as deviations from Angus breed. These 
authors also determined individual heterosis effects 
varying from 0.63 to ‑2.43 kg. Likewise, significant 
breed and heterosis effects were found by Perotto et al. 
(2000), Franke et al. (2001), Abdel‑Aziz et al. (2003), 
Brandt et al. (2010), and Barichello et al. (2011) for birth 
weight, yearling weight, and scrotal circumference.

However, multicollinearity was not a severe problem 
in the models used in the present study, with variables 
only involved in weak collinearities. Similar results 
were observed by Roso et al. (2005a) in a crossbred 
population of 869,050 individuals formed by Angus, 
Blonde d’Aquitaine, Charolais, Gelbvieh, Hereford, 
Limousin, Maine‑Anjou, Salers, Shorthorn, and 
Simmental breeds. For a model involving additive 
and dominance effects associated to these breeds, the 
authors estimated an average VIF of 26.81 and CI values 
between 3.41 and 38.85. In both studies, the amount 
of information available reduced multicollinearity 
effects, as mentioned before. Nevertheless, these 
effects are more evident in small samples. For example, 
Schoeman et al. (2002), employing 17,258 weaning 
weight records from a crossbred population formed by 
Afrikaner, Hereford, Angus, Simmental, and Charolais 
breeds, found VIF values from 1,386 to 19,402 for 
fixed direct and maternal additive effects, which are 
considerably larger than the threshold of 10.

Independently of the intensity, the presence of 
multicollinearity in regression models can affect 
the accuracy of the estimates and, consequently, 
the veracity of the inferences based on these results. 
Specifically in animal breeding programs, this can be 
translated in erroneous choices of breeds for crosses 
and in larger differences among the predicted and true 
genetic gain. Therefore, it is important to consider 
alternative approaches for the estimation of genetic 
effects when collinearity occurs. One of these methods 
is ridge regression (Hoerl & Kennard, 1970), which 
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is based on the addition of non‑negative coefficients 
to the principal diagonal of the correlation matrix, 
which reduces or eliminates linear dependencies. 
Although biased, in the presence of multicollinearity, 
ridge estimators present lower standard errors and are 
more stable. Consequently, more accurate estimates 
are obtained than by using the ordinary least squares 
method. The least absolute shrinkage and selection 
operator (Lasso) regression (Tibshirani, 1996) is also a 
methodology used to deal with sparse solutions caused 
by multicollinearity, in which regression coefficients 
associated with irrelevant or redundant variables are 
reduced to zero. Roso et al. (2005a), Pimentel et al. 
(2006), Dias et al. (2011), Long et al. (2011), and Li 
& Sillanpää (2012) showed the advantages of these 
methodologies in regression models for genetic 
analyses when multicollinearity is present.

Conclusions

1. In the presence of multicollinearity, the results are 
sensitive to changes in the database and in the model.

2. Additive and non-additive effects are commonly 
involved in collinearity relations due to the inherent 
relationship between these variables.

3. Since the estimates yielded by the least squares 
method are less accurate when multicollinearity occurs, 
it is important to consider multicollinearity diagnostics 
as a preliminary analysis in animal breeding programs 
to avoid erroneous inferences and low selection 
efficiency.

4. It is still necessary to evaluate the impact of 
multicollinearity in the estimation of genetic parameters 
and breeding values and to assess the efficiency of an 
alternative method to the least squares methodology in 
order to complement the available information on this 
subject.
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