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Abstract − Collembolan communities in conifer plantations (Japanese cedar, Cryptomeria japonica) and secondary 
deciduous broad-leaved forests of varying ages were investigated to determine the extent to which forest conversion 
(broad-leaved to coniferous) affects the species richness and assemblage composition of Collembola in central 
Japan. Density and total species richness of Collembola not differed between the broad-leaved and cedar forests 
except immediately after clear-cutting. The amount of forest-fl oor organic matter was larger in cedar forests and 
positively correlated with the species richness of detritus feeders. Species richness of fungal feeders and sucking 
feeders positively correlated with the species richness of forest-fl oor plants. There was difference in collembolan 
species composition between the forest types. The age of the forests seemed to have only small importance for the 
collembolan community, except during the fi rst four years after clear-cutting. The conversion to artifi cial cedar 
stands has not reduced the abundance or species richness of collembolan communities, but has affected community 
composition. Differences in species composition may be related to the ground fl oras.

Index terms: japanese cedar, species composition, feeding habit, undergrowth.

Comunidade de Colêmbolos em fl orestas decíduas 

e em plantações da conífera Cryptomeria japonica no Japão central

Resumo − As comunidades de colêmbolos nas plantações da conífera Cryptomeria japonica (cedro japonês) e 
fl orestas decíduas secundárias de várias idades foram investigadas para determinar até que ponto a conversão da 
fl oresta decídua em conífera afeta a riqueza das espécies e a composição das comunidades de colêmbolos no Japão 
central. A densidade e a riqueza total de espécies de Collembola não foram diferentes entre as fl orestas decíduas e de 
cedro, exceto imediatamente depois do corte raso. A quantidade de matéria orgânica acumulada no solo foi maior sob 
cedro e positivamente correlacionada com a riqueza de espécies de detritívoros. A riqueza de espécies de fungívoros 
e sugadores foi positivamente correlacionada à riqueza de espécies de plantas do estrato herbáceo da fl oresta. Houve 
diferença na composição das espécies de colêmbolos entre os tipos de fl oresta. A idade das fl orestas parece ter pouca 
importância para a comunidade de colêmbolos, exceto nos primeiros quatro anos após o corte raso. Concluiu-se que 
a conversão da fl oresta decídua em plantações de cedro japonês não causou diminuição na abundância e na riqueza 
das espécies das comunidades de colêmbolos, mas afetou a composição dessas comunidades. As diferenças na 
composição das espécies podem ser relacionadas ao desenvolvimento de plantas do estrato herbáceo da fl oresta.

Termos para indexação: cedro japonês, composição de espécies, hábito alimentar, vegetação rasteira. 

Introduction

In Japan, a major land-use change has been forest 
conversion from natural or secondary broad-leaved 
woodland to conifer plantation, mainly using the 
Japanese cedar (Cryptomeria japonica) and Hinoki 
cypress (Chamaecyparis obtusa). The area occupied 
by such plantations now represents about 30% of the 
total forest area of Japan (Japan Agriculture Statistics 

Association, 2001), and the conversion process has 
been reported to reduce biodiversity and simplify 
community structures of some arthropod fauna 
(Maeto & Sato, 2004; Makino et al., 2007). Early 
studies comparing faunas of forest sites (Watanabe, 
1973; Kaneko, 1995) should now be supplemented 
by monitoring communites along chronosequences 
because collembolan community structures generally 
change as forests grow (Hasegawa et al., 2006). 
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It has been shown that the soil arthropods, such as 
Collembola, may be sensitive to silvicultural practices 
(Huhta et al., 1967; Bird & Chatarpaul, 1986) and plant 
community structures (Blair et al., 1994; Deharveng, 
1996; Pinto et al., 1997; Elmer et al., 2004). However, 
other studies have indicated only a weak relation 
(Hågvar, 1982; Migge et al., 1998; Scheu et al., 2003; 
Salamon et al., 2004). The magnitude of such effects 
may depend on situation (e.g. climate, site history 
or tree species) or soil variables such as humidity, 
pH, fertility, humus form and temperature (Verhoef, 
1981; Hågvar, 1982; Ponge, 1993; Cassagne et al., 
2003). These soil environment factors are in turn 
correlated with vegetation (Materna, 2004). The 
objective of this work was to determine differences 
in Collembola in broad-leaved forests and in conifer 
plantation, and to address possible causes for the 
differences.

Materials and Methods

The study area was located at the southern edge of 
the Abukuma Mountains, in northern Ibaraki, central 
Japan (approximately 36°50~56'N, 140°34~35'E, 
580–800 m a.s.l.; mean annual air temperature 
10.7°C; mean annual precipitation 1,900 mm). Planted 
forests contained two conifers, Cryptomeria japonica 
and Chamaecyparis obtusa. In deciduous forests, 
the dominant trees were Quercus serrata, 
Quercus mongolica and Fagus crenata (Table 1; 
Inoue, 2003).

Two chronosequences were sampled: one (B series, 
Table 1) containing eight stands of deciduous forest of 
different ages (1, 4, 12, 24, 51, 54, 71 and ≥128 years 

following clear-felling), and a second (C series, Table 1) 

containing eight stands of Cryptomeria japonica of 

different ages (4, 8, 10, 21, 30, 32, 76 and 77 years 

after planting). All sixteen stands were located within 

a 10x10 km area.

Forest fl oors were sampled in April, August and 

November 2002 (deciduous forests) and 2004 (conifer 

plantation). In each stand, an 8x8 m plot was set up and 

divided into eight subplots (2x4 m). Samples from the 

forest fl oor were collected with a corer (125 mL, 5-cm 

depth, 25-cm2 area) from each subplot. Most collembolans 

occur in the litter layer and the upper mineral soil 

layer, within the top 5 cm of the profi le. A total of 384 

samples (2 forest types x 8 sites x 8 subplots x 3 dates) 

were collected. Collembolans were extracted using 

Tullgren funnels at a constant temperature of 35°C for 

72 hours. Specimens were allocated to feeding groups 

(fungus-feeders, detritus-feeders or sucking-feeders) 

by analysis of gut contents, following Takeda & 

Ichimura (1983) and Hasegawa & Takeda (1995). 

      Litter samples for chemical parameters and respiration 

analyses were taken from fi ve plots in each forest site 

in July 2003. In each of them, litter was taken from a 

25x25 cm subquadrate, weighed, air-dried at 40°C for 

72 hours, and fi nally reweighed. The standard errors 

of fi ve replicates were 8 to 15% of the average values. 

Cores of 100 mL of the top 5 cm of soil were collected 

for chemical analysis. For soil pH and EC analysis, 5 g 

Table 1. Forest fl oor and soil (0–5 cm) environmental variables at each site of broad-leaved forest (B) and conifer plantation (C).

(1)The numbers after the alphabet letters refers to the age after clear-cutting.
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of fresh soil mixed with 25 mL of a 0.1 mol L-1 KCl 
solution (for pH) or deionized water (for EC). A glass 
electrode (HM14P, DKK-Toa Corp., Tokyo, Japan) 
was used to measure pH and soil EC was measured 
with a conductivity cell electrode (SC82, Yokogawa 
Electric Corp., Tokyo, Japan). Soil organic matter was 
determined by mass loss on ignition after burning in an 
electric furnace (1,000°C, for 1 hour). Total carbon and 
nitrogen concentrations in soil were measured with a 
NC analyzer (Sumigraph NC-900, SCAS Ltd., Japan). 
Samples for soil respiration measurements were 
collected from mineral surface soil at 0 to 4 cm depth 
using a 400-mL cylindrical sampler with fi ve replicates 

at each plot and sieved through a 2-mm mesh to 

remove roots and coarse organic particles. Subsamples 

of about 40 g were then incubated in sealed 650-mL 

containers at 15°C for two days. After incubation, the 

CO2 concentrations in the container were measured at 0, 

2.5 and 5 hours at 15°C using an infrared gas analyzer 

(ZFP9, Fuji Electric Co., Japan). Carbon/nitrogen ratio 

and pH were also determined.

We established a belt transect (10x100 m) at each 

site from September 2000 to October 2003. The DBH 

(diameter at breast height) above 5 cm was recorded 

for all trees and vines at or above 2 m height in forty 

5x5 m quadrats along a 100-m transect line. The 

frequency of trees smaller than 5 cm in DBH was also 

determined. Forest-fl oor vegetation with a height of 

less than 2 m (designated as forest-fl oor plants) was 

estimated following the Braun-Blanquet method using 

1x1-m quadrats. Physical and chemical parameters of 

soil were compared using ANOVA (SYSTAT 5.2.1 

for Mac; SYSTAT Inc., Evanston, USA). To compare 

collembolan density between forest types, we used 

generalized linear models (GLM) with the assumption 

of negative binominal distribution for the number of 

individuals, following Sileshi (2008). To compare 

species richness, we used generalized linear models 

(GLM) with the assumption of Poisson distribution (R 

version 2.4.1; R Development Core Team, 2006).

Pooled data derived from three sampling occasions 

were used to determine Spearman rank correlation 

coeffi cients for collembolan density using SYSTAT 

5.2.1 for Mac (SYSTAT Inc., Evanston, USA). 

Detrended correspondence analysis (DCA) for species 

richness scores and environmental variables was 

carried out with Canoco for Windows, Version 4.5 

(Ter Braak & Šmilauer, 2002). In DCA, only those 

species with a total count of at least three individuals 

were included. Population data were transformed to 

log10(x+1). Detrending was conducted using second 

order polynomials.

To investigate the effects of plant community 

species composition on collembolans, Spearman rank 

correlation coeffi cients between the DCA fi rst axis 

scores of the collembolan group ordination and those of 

the plant community group ordination were calculated. 

The plant community was divided into three groups: 

trees with DBH ≥5 cm, trees with DBH <5 cm and 

forest-fl oor plants. In DCA of trees with DBH ≥5 cm, 

the 1-year-old site and the 4-year-old site were 

excluded because there were no trees in these size 

classes. Likewise, in the DCA of forest-fl oor plants, 

the 1-year-old site was excluded. In DCA, only species 

with at least three individuals in total were used, 

and population data were transformed as log10(x+1). 

Indicator species analysis (Dufrêne & Legendre, 1997) 

was performed with PC-ORD ver. 4 (McCune & 

Mefford, 2006) to identify the representative species of 

Collembola for groups of sites identifi ed by ordination. 

This analysis produced indicator values (IndVals) 

for each species in each group of sites, which were 

subsequently tested for statistical signifi cance using a 

Monte Carlo technique.

Results and Discussion

Forest-fl oor organic detritus weight was signifi cantly 

larger in the conifer forest than in the broad-leaved 

forest (p<0.05), and tended to increase with forest 

age. Soil respiration showed an increase with forest 

age but did not show a signifi cant difference between 

forest types. Water content of the forest-fl oor detritus, 

pH, EC and C/N were not different between forest 

types, and did not show any pattern with forest age 

(Table 1). Average DBH of trees was signifi cantly 

larger in coniferous sites (p<0.05, B1, B4, C4 were 

excluded in the calculation), while species richness of 

trees with DBH >5 cm (p<0.01, B1, B4 and C4 were 

excluded in the calculation) was signifi cantly larger in 

broad-leaved sites (p<0.05). The species richness of 

forest-fl oor plants in the conifer sites decreases during 

middle age (20–30 years). That is due to the closing 

of the canopy by the planted trees, but after 30 years 

the crown is reopened by thinning. In contrast, species 

richness of forest-fl oor plants in broad-leaved trees 
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gradually increased until 50 years after the clear-felling 
(Table 2).

Densities of collembolans ranged from 12,000–53,000 
ind. m-2 in the deciduous forests and from 5,700–79,000 
ind. m-2 in conifer plantations (Figure 1). Average species 
richness per core ranged from 8–21 in the deciduous forests 
and from 6–20 in the conifer plantations (Figure 2). Total 
species richness in each site on each sampling occasion 
ranged from 37–60 in deciduous forests and from 49–65 
in conifer plantations. Total species richness found in 
eight forest sites through three samping occasions was 
87 in deciduous forest and 95 in conifer plantations. The 
difference in both density and species richness between 
forest types was not signifi cant.

Detritus feeders were dominant both in density and 

in species richness. For density, average dominancy 

of detritus feeders was of 80% (deciduous) and 82% 

(conifer), and for species richness, of 52% (deciduous) 

and 60% (conifer). Sucking feeders had the lowest 

values. The density of all feeding groups was not 

signifi cantly different between forest types (Figure 3). 

Total species richness of detritus feeders in each 

site through three sampling occasions was slightly 

higher in conifer sites than in deciduous forests and 

the difference was signifi cant (p<0.05) (Figure 4). 

The species richness of fungal feeders in deciduous 

forest tended to be higher but the difference was not 

signifi cant between forest types. Also, the species 

richness of sucking feeders was not signifi cantly 

different between forest types (Figure 4). The lack of 

a clear effect mirrors reforestation in central Europe, 

where conversion of beech forest to spruce did not 

produce a decline neither in density and species 

richness of Collembola (Scheu et al., 2003; Salamon 

et al., 2008), nor responded to the age of forest and tree 

species. In comparisons of pure and mixed stands of 

beech and spruce of varying ages, Salamon et al. (2008) 

also suggested that total abundance of Collembola did 

not show strong correlation with stand type or age. In 

their study, the dominant species in each stand were 

common and species richness tended to be lower in 

mixed forests.

Deharveng (1996) suggested that most of the 

forested areas of Europe have been severely disturbed 

since ancient times (Mediterranean area) or are devoid 

Table 2. Tree and ground fl ora data for all sites of broad-

leaved forest (B) and conifer plantation (C): average diameter 

at breast height of trees (DBH >5 cm) and species richness of 

trees (DBH >5 cm and <5 cm) and forest-fl oor plants. 

(1)The numbers after the alphabet letters refers to the age after clear-cutting. 

Figure 1. Mean density (individuals m-2) of total collembolans in broad-leaved forests (sampled in 2002) and in conifer 

stands (sample in 2004) of different ages (years) after clear-cutting. Bars indicate standard errors.
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of endemic taxa (Northern Europe). He indicated that 
the effects of forest modifi cations on biodiversity 

may be erratic in such situations. Our study sites are 

in the mountainous areas, which in the past had been 

subjected to human activities such as burning, cattle 

grazing and clear-cutting for fuel wood (Nakashizuka 

& Matsumoto, 2002). Thus, these past uses may 

have masked an effect of the conversion. In contrast, 

the reforestation in Southern Europe, commonly a 

conversion from Quercus to Eucalyptus or exotic pine, 

caused the decline of the collembolan community 

when compared with the natural vegetation (Jordana 

et al., 1987; Sousa et al., 1994). Sousa et al. (1994) 

compared Collembola populations from a Quercus 

forest and a Eucalyptus plantation in Portugal, and 

showed degradation of the collembolan community 

structure, the fauna associated with the Quercus stands 

being richer and more abundant than under Eucalyptus. 

These authors also suggested that the disruption 

of the collembolan community might be related to 

the profound alterations of habitat characteristics, 

particularly frequent removal of shrub vegetation and 

leaf layer in the Eucalyptus plantation.

In their example of conversion from beech to spruce 

stands in the central Pyrenees, Cassagne et al. (2004) 

suggested that collembolan species diversity within 

Figure 2. Average mean species richness per core of total collembolans in broad-leaved forests (sampled in 2002) and in 

conifer stands (sample in 2004) of different ages (years) after clear-cutting. 

Figure 3. Density (no. of ind. m2) of feeding groups of collembolans in broad-leaved forests (sampled in 2002) and in conifer 

stands (sample in 2004) of different ages (years) after clear-cutting. Averages of data obtained on three sampling dates are 

given. Bars indicate standard errors. 
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the A horizon was signifi cantly lower under spruce at 

the early stage of the silvogenetic cycle. Differences 

in species composition were related to environmental 

changes. Among the various habitats or environmental 

variables, which infl uenced the collembolan community 

structures, the quantity and water content of the litter 

could be important environmental variables for the 

collembolan community (Verhoef, 1981; Takeda, 

1987; Hasegawa, 2002). In the present study, there was 

more litter in coniferous forests, but water content was 

not signifi cantly different. Hågvar (1982) examined 

the links between Collembola to plant communities, 

and considered that the more extreme environmental 

conditions are (e.g. soil moisture), the more likely it is 

that vegetation can determine the collembolan fauna. 

Thus, the conversion to coniferous forest in the present 

study may not have caused suffi cient alteration of 

habitat characteristics to affect the collembolan fauna.

In a comparison between beech forest with spruce 

or fi r plantation in the Pyrenees, Deharveng (1996) 

indicated a lack of collembolan diversity in the 

plantations. The endemic component of collembolan 

communities suffered a particulary severe loss in 

species richness and abundance, whereas non-endemic 

species were less affected. In our study, endemic 

species were not present in the study area. Thus, most 

of the species in the community may have a wide 

habitat tolerance. The density of total Collembola and 

each feeding group did not signifi cantly correlate with 

the variables of soil and plant communities. Species 

richness of total Collembola also did not signifi cantly 

correlate with the variables, but species richness 

of each feeding group signifi cantly correlated with 

average DBH and litter quantity. Species richness of 

detritus feeders was also signifi cantly correlated with 

DCA axis 1 of trees with DBH >5 cm, DCA axis 1 of 

trees with DBH <5 cm and DCA axis 2 of forest-fl oor 

plants (Table 3). Species richness of fungal feeders 

was positively correlated with the species richness 

of forest-fl oor plants and negatively correlated with 

DCA axis 2 of forest-fl oor plants. Species richness 

of sucking feeders was correlated positively with the 

species richness of forest-fl oor plants.

Communities associated with conifer and 

broad-leaved sites were relatively well defi ned in 

the ordination diagram for total Collembola and all 

feeding groups (Figure 5). Eigenvalues of the fi rst 

two axes and their cumulative percentage in DCA 

were (respectively), 0.15, 0.11 and 31% for total 

collembolans, 0.15, 0.08 and 36% for detritus feeders, 

0.30, 0.17 and 41% for fungal feeders and 0.41, 0.29 

and 36% for sucking feeders. In the ordination diagram 

for total Collembola, broad-leaved sites except B4 

and coniferous sites except C4 appear to be clumped. 

Therefore, these groups of sites were designated as 

‘broad-leaved group’ and ‘conifer group’. B4 and C4 

were separated from the other sites, and were thus 

combined as the ‘early-growth group’. Only four 

of the top 25 dominant species of Collembola were 

selected as indicator species of each group at p<0.05 

Figure 4. Species richness of feeding groups of collembolans in broad-leaved forests (sampled in 2002) and in conifer stands 

(sample in 2004)  of different ages (years) after clear-cutting. Totals of data obtained on three sampling dates are given. 
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level: Folsomina onychiurina, early growth; Folsomia 

quadrioculata, Broad-leaved; Megalothorax minimus, 
coniferous, Xenylla brevispina, coniferous. The 
coordinates of these four species in the DCA ordination 
diagram of total Collembola are shown with those of 
the top three dominant species (Figure 5 A).

Site scores in DCA axis 1 of total Collembola 
and detritus feeders signifi cantly correlated with the 

forest-fl oor mass, average DBH and DCA axis of 

each category of plant. Site scores in DCA axis 1 of 

fungal feeders signifi cantly correlated with scores in 

DCA axis of each category of plant. Site scores in 

DCA axis 1 of sucking feeders signifi cantly correlated 

with the forest-fl oor water content, species richness 

(DBH >5 cm), and average DBH and site scores in 

DCA axis of each category of plant. Fungal feeders and 

sucking feeders showed higher correlation coeffi cients 

with site scores in DCA axis 2 of forest-fl oor plants 

(Table 4). Despite the minor effects on the density and 

species richness in our study, DCA enabled a relatively 

clear distinction to be made between broad-leaved 

forests and coniferous forests. Materna (2004) showed 

that, although the collembolan species composition was 

quite similar, in beech and spruce forests (77% shared 

species) the communities in each site were clearly 

delimited at both the qualitative (presence-absence) 

and quantitative (density of individual species) levels. 

Some species seemed to prefer one type of forest 

sites.

Hasegawa (2002) and Salamon et al. (2008) suggested 

that stand type and forest age affected Collembola 

communities, presumably via changes in the amount 

and quality of food resources, such as living plants 

and herb-litter materials. In our study, species richness 

of detritus feeders was signifi cantly correlated with 

Table 3. Spearman correlation coeffi cient for pairwise 

comparisons between species richness of each feeding group 

and variables of the forest-fl oor and plant communities(1).

(1)Correlation coeffi cients were shown only when signifi cant correlation 

(p<0.05) was detected. DBH, diameter at breast height; DCA, detrended 

correspondence analysis; AX, axis; ns, not signifi cant.

litter quantity. In addition, site scores in DCA axis 1 of 

detritus feeders (but not other trophic groups) were also 

signifi cantly correlated with litter quantity. Dominant 

species of detritus feeders included F layer specialists 

(F. quadrioculata or F. onychiurina), which would be 

expected to respond to a well-developed litter layer. 

Species richness of fungal feeders correlated with the 

species richness of forest-fl oor plants and site scores in 

DCA axis 2 of forest-fl oor plants. Site scores in DCA 

axis 1 of fungal feeders showed a high correlation 

with site scores in DCA axis 2 of forest-fl oor plants. 

This suggests that the ground fl ora also affects fungus 

feeders. Materna (2004) found differences in the density 

of several collembolan species between patches with 

and without herb vegetation, and suggested that this 

could result from different microclimatic conditions, 

additional litter supply from herbs or interactions 

of Collembola with roots. In our defi nition, fungal 

feeders include surface-dwelling species (Hasegawa 

& Takeda, 1995), whose microclimates are more 

directly dependent on the ground fl ora. Site scores 

of DCA axis 1 of sucking feeders were signifi cantly 

correlated with the forest-fl oor water content. Sucking 

feeders take up organic matter or bacteria suspended 

in soil water (Singh, 1969). Therefore, water status in 

the litter may control this group.

Salamon et al. (2004) failed to fi nd any correlation 

between species richness or functional group of plant 

and total diversity of collembolans in their experiment 

conducted in a series of plots with up to 32 plant species 

in a grassland community. Instead, they found that plant 

species composition, i.e. the identity of plant species in a 

mixture, affected densities of most of the Collembola and 

seems to be a more important determinant of Collembola 

abundance and diversity in grasslands than plant species 

richness per se or the number of plant functional groups. 

Milcu et al. (2006) investigation of effect of plant species 

diversity on the soil decomposer community showed 

positive or inconsistent effects. They also suggested that 

the identity of functional groups and the identity of plant 

species are more important for Collembolan performance 

than the diversity of plant species and functional groups 

per se. Salamon et al. (2004) indicated the importance of 

legumes, and Milcu et al. (2006) showed the importance 

of grasses to Collembola communities. In the present 

study, it was not clear what species in forest fl oors are 

important for the community structure of these feeding 

groups.
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Folsomina onychiurina emerged as an indicator of 
the successional stage of forest growth. This species 
is known to occur in different kinds of forests and 
open grassland litter (Potapov, 2001). Takeda (1987) 
showed that it was one of the dominant species of 
pine forests, while Tanaka & Kitazawa (1982) showed 
that it maintained similar abundance in lawns and 
natural forests. Folsomia quadrioculata was selected 

as an indicator of mature broad-leaved forest, despite 
the observation of Salamon et al. (2008) that it was 
more dominant in coniferous forests (Picea) than in 
broad-leaved forests. They attributed the dominance of 
the species in conifer forests to the higher humidity, 
compared with broad-leaved forests. In the present 
study, the water content of the forest fl oor was 
similar between forest types. Therefore, humidity was 

Figure 5. Detrended correspondence analysis (DCA) ordination diagrams for: A, total collembolans; B, detritus feeders; C, 
fungal feeders; and D, sucking feeders. Black circles show the positions of communities in broad-leaved forests, and white 
squares show the positions of communities in conifer plantations. Crosses show the positions of the main or indicator species. 
Folo, Folsomia octoculata; Isot, Isotomiella minor; Folh, F. hidakana; Folq, F. quadrioculata; Foon, Folsomina onychiurina; 
Xenb, Xenylla brevispina; Megm, Megalothorax minimus; Cerc, Ceratophysella communis; Cerd, C. denisana; Tomv, Tomocerus 

varius; Para, Paranura sp.1; Soda, Superodontella sp. a; Sodb, Superodontella sp. b.
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apparently not a determinant of the distribution of the species. 
This species is known to be sensitive to different kinds of 
disturbances in Europe (Potapov, 2001). In addition, in Japan, 
Tanaka & Kitazawa (1982) showed a sudden decrease in the 
density of the species from natural to secondary forest.

Xenylla brevispina was selected as an indicator of the 
conifer group, and it is known to be dominant in the canopies 
of coniferous forests (Yoshida & Hijii, 2005). This species 
hatches in the soil and moves upwards into the canopy for 
growth and moves down to the soil for overwintering (Itoh, 
1991). Yoshida & Hijii (2006a) suggested that the densities 
of X. brevispina per unit weight of litter were similar between 
canopy litter and forest-fl oor litter. They also reported that 
the standing arboreal litter in a 33-year-old Cryptomeria 
forest was several times larger than that of the soil (Yoshida 
& Hijii, 2006b). This suggests that a considerable part of 
the population of X. brevispina may be maintained by the 
arboreal litter in Cryptomeria forests. In the present study, the 
presence of arboreal litter and life strategy of X. brevispina 
may explain the larger population of the species in the conifer 
plantations (Cryptomeria forests) than in the deciduous 
broad-leaved forests, which seemed to have only a small 
amount of arboreal litter.

Conclusions

1. The conversion of broadleaved deciduous forest 
to cedar stands did not reduce the density and species 
richness of collembolans, but affected community 
structure.

2. The difference in species composition may be 
related to the accumulations of litter and changes in 
the ground fl ora. In silvicultural management, more 
attention should be given to the forest-fl oor plants to 
help maintain the biodiversity of soil fauna.
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