RESPOSTA DE CENTROSEMA À INOCULAÇÃO COM ESTIRPES LOCAIS DE BRADYRHIZOBIUM sp.1

MILTON ANTONIO SEGANFREDO² e PEDRO ALBERTO SELBACH³

RESUMO - Visando avaliar o desempenho de cinco genótipos de centrosema quanto à fixação do nitrogênio atmosférico com estirpes de rizóbio locais, conduziu-se, em casa de vegetação, um experimento em areia-solução nutritiva, em vasos-Leonard. Os resultados obtidos apontaram resposta à inoculação, para todos os genótipos. A quantidade de N fixada foi variável de acordo com o genótipo, estirpe com inóculo, e interação entre genótipos e estirpes.

Termos para indexação: fixação simbiótica de nitrogênio, especificidade leguminosa-Bradyrhizobium.

RESPONSE OF CENTROSEMA TO INOCULATION WITH LOCAL BRADYRHIZOBIUM sp. STRAINS

ABSTRACT - Five plant genotypes of centrosema (Centrosema sp.) were tested against local Bradyrhizobium sp. strains with regard to symbiotic nitrogen fixation in sand-nutritive solution in a greenhouse trial. The response to inoculation was positive. The amount of nitrogen fixed was a function of plant genotype, strain inoculated and plant genotype x strain interaction.

Index terms; nitrogen fixation, legume-Bradyrhizobium specificity.

INTRODUÇÃO

Freqüentemente é afirmado que as leguminosas tropicais não são capazes de fixar N em quantidades suficientes para manter a produtividade de pastagens. Entretanto, a baixa fixação apresentada por algumas leguminosas tropicais se deve a seus requerimentos específicos quanto ao rizóbio, e, não, propriamente, pela falta de potencial genético por parte da leguminosa (Halliday 1979, Norris 1967 e Date 1976).

Desta forma, o desenvolvimento de uma nova cultivar ou a introdução de determinada leguminosa em novas áreas torna necessário a avaliação de sua eficiência simbiótica não apenas com as estirpes nativas, mas também com as já selecionadas para inoculantes, pois a formação de uma simbiose eficiente é fundamental para o melhor aproveitamento da capacidade de leguminosa para fixar o N atmosférico.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação, em vasos-Leonard com solução nutritiva, os quais foram preparados com uma mistura de areiacarvão vegetal na proporção 3:1, conforme procedimento de rotina da Equipe de Microbiologia do Solo da Secretaria da Agricultura - do IPAGRO - e do Departamento de Solos da Faculdade de Agronomia da UFRGS, Porto Alegre, RS.

Os tratamentos, em delineamento completamente casualizado, com três repetições, consistiram da combinação de cinco genótipos de centrosema: híbrido Itaguaí, CPAC 1987, CPAC 2047, CPAC 2006 e Centrosema brasilianum com as estirpes locais 28 bb, 55 L, 29 L II e a estirpe SEMIA 6134 da coleção do MIRCEN - IPAGRO, Porto Alegre, RS, indicada para centrosema, além de uma testemunha sem inóculo e outra com N mineral. Uma das repetições não foi incluída na análise estatística.

Aceito para publicação em 3 de abril de 1989.
Parte do trabalho de Dissertação para Mestrado-Solos (Fac. Agron. UFRGS), do primeiro autor.

² Eng. - Agr., M.Sc., Empresa Catarinense de Pesquisa Agropecuária S.A. (EMPASC), Caixa Postal 98, CEP 88400, Ituporanga, SC.

³ Eng. - Agr., M.Sc., Prof. - Adj., Dep. de Solos, Fac. Agron., UFRGS, CEP 90000 Porto Alegre, RS.

As sementes foram escarificadas com ácido sulfúrico concentrado, por 15 a 30 min, dependendo do híbrido utilizado, e em seguida, lavadas com água esterilizada, por oito vezes.

A pré-germinação das sementes foi efetuada em condições assépticas, em estufa a 28-30°C, utilizando-se papel germitest umedecido. Após o surgimento das radículas, efetuou-se o transplante para vasos-Leonard esterilizados.

O preparo dos vasos para o transplante constou do umedecimento da sua parte superior com 100 ml de solução nutritiva descrita em Specht et al. (1956), completa, e na parte inferior, o volume colocado foi de 500 ml, e a ele foram adicionados 15 mg de NH₄NO₃ para o N de arranque; esta operação foi repetida aos quinze dias.

O plantio foi efetuado em 20.11.86, e em cada vaso foram colocadas seis plântulas, deixando-se três plantas por vaso após o desbaste.

A inoculação foi efetuada aos sete dias após o transplante, com 3 ml de suspensão bacteriana concentrada, obtida a partir de colônias desenvolvidas em meio ELMA sólido, além de uma aplicação adicional de 3 ml de uma suspensão de inóculo, desenvolvido em meio ELMA líquido.

A testemunha com N mineral recebeu um total de 300 mg/vaso de NH₄NO₃, subdividido em doses iguais a cada três dias, a partir de quinze dias após a emergência das plantas, até sete dias antes da colheita.

A colheita das plantas foi efetuada aos 60 dias, e as variáveis avaliadas foram: o N total da parte aérea por destilação segundo o método semi-micro-kjeldahl modificado por Tedesco (1978), peso de nódulos secos, e matéria seca, obtidos após a secagem em estufa a 65°C até peso constante.

Para diminuir o efeito de eventuais microssítios existentes no ambiente experimental, os vasos foram redistribuídos ao acaso a cada dez dias.

RESULTADOS E DISCUSSÃO

Apresenta-se, na Tabela 1, o efeito de estirpes e genótipos no rendimento de matéria seca, N total, e peso de nódulos secos. Pelo teste F a 5%, houve efeito significativo de estirpes e genótipos para as três variáveis avaliadas. A interação entre estirpes e genótipos foi significativa somente para o N total.

Tendo-se como referência relativa a estirpe SEMIA 6134, pode ser observado que ela foi inferior à testemunha com N mineral, e a estirpe 55 L, para matéria seca, superior às demais para peso de nódulos secos e N total, exceto à testemunha com N mineral para esta variável.

Dentre as estirpes locais, todas superiores à testemunha sem inóculo, a 55 L foi a que melhor desempenho apresentou, para todas as variáveis consideradas, seguindo-se a 29 L.

TABELA 1. Efeito de estirpes e genótipos no rendimento de matéria seca (MS), nitrogênio total (NT) e peso de nódulos secos (PNS) em centrosema em vasos-Leonard; média de duas repetições, com três plantas por vaso.

	MS	PR	NTa	PR	PNSb	PR	
	g/vaso		mg/vasc	,	mg/vaso)	
Estirpes							
55 L	1,12	102	4,76	100	7,30	89	
29 L	0,95	86	3,60	75	5,04	61	
291 II	0,91	83	2,93	61	4,16	51	
116 L	0,87	79	3,42	72	4,50	55	
SEMIA							
6134	1,10	100	4,77	100	8,22	100	
NIC	0,85	77	2,63	55	-	-	
TNd	1,37	124	5,84	122	-	-	
F	6,22*		9,12*		3,40*		
Genótipos							
Itaguaí	1,43	100	6,50	100	11,99	100	
C. bras.	0,83	58	2,75	42	3,53	29	
CPAC 2006	0,99	69	3,92	60	5,17	43	
CPAC 1987	1,00	70	3,52	54	3,82	32	
CPAC 2047	0,87	61	3,26	50	4,71	39	
F	14,60*		20,34*		13,72*		
Fes x ge	1,37 N	S	1,89*		1,51 N	IS	

PR = Produção relativa; 100 x estirpe n/estirpe SEMIA 6134.

- a = Valores transformados para raiz de x.
- b = Valores transformados para raiz de x + 1.
- c = Testemunha não inoculada.
- d = Testemunha com N mineral.
- * = significância estatística a 5% de probabilidade.
- NS = não-significativo a 5% de probabilidade.

Para os genótipos, observa-se, na Tabela 1, que o híbrido Itaguaí foi superior aos restantes, para as três variáveis avaliadas.

A significância estatística pelo teste F a 5% para o efeito de genótipos, principalmente sobre o peso de nódulos secos, corrobora o que afirma Nutman (1969), o qual aponta especificidade hospedeira em centrosema. Resultados semelhantes para esta leguminosa também são relatados por Serpa & Cunha Filho (1970), que detectaram nodulação precoce ou tardia, e Bowen & Kennedy (1961), nodulação esparsa ou abundante, de acordo com o genótipo utilizado.

Para o N total, o desmembramento da interação genótipos com estirpes demonstra que, para estirpes dentro de genótipos (Tabela 2), o efeito foi não-significativo para os genótipos Centrosema brasilianum e CPAC 1987, ao passo que para genótipos dentro de estirpes, o efeito foi significativo para todas as estirpes (Tabela 3).

As maiores médias dos teores de N total para estirpes dentro de genótipos (Tabela 2) foram as da 55 L para o híbrido "Itaguaí", e

29 L, 55 L e SEMIA 6134 para Centrosema brasilianum, híbrido CPAC 2006 e CPAC 2047; e 29 L, 116 L e 6134 para o híbrido Itaguaí, Centrosema brasilianum, e híbridos CPAC 2006, CPAC 1987 e CPAC 2047, respectivamente; porém, apenas a 55 L para o híbrido "Itaguaí" foi superior à testemunha com N mineral.

Conforme pode ser verificado na Tabela 2, a estirpe local 55 L produziu médias situadas entre as três primeiras, em quatro dos cinco genótipos testados.

Na comparação de genótipos dentro de estirpes (Tabela 3), o híbrido Itaguaí foi superior aos demais para as estirpes locais 55 L, 29 L, 116 L, SEMIA 6134 e testemunha com N mineral, porém, inferior a *Centrosema brasilianum* para a estirpe local 29 L II e testemunha sem inóculo.

Esta interação significativa entre estirpes e genótipos para o N total demonstra que a quantidade fixada deste elemento foi dependente não apenas das estirpes e genótipos isoladamente, mas também, da combinação de ambos.

TABELA 2. Efeito de estirpes dentro de genótipos no N total^a (mg/vaso) em centrosema em vasos-Leonard; média de duas repetições, com três plantas por vaso.

Estirpes	Genótipos												
	Itaguaí	PR	Centr. bras.	PR	CPAC 2006	PR	CPAC 1987	PR	CPAC 2047	PR			
55 L	9,07	152	5,87	136	5,38	107	3,54	83	4,76	100			
29 L	7,13	120	5,96	138	2,94	58	2,93	69	3,60	75			
29 LII	4,24	71	5,19	120	3,20	64	2,50	59	2,93	61			
116 L	7,38	124	5,88	136	2,57	51	2,54	60	3,42	72			
SEMIA 6134	5,96	100	4,33	100	5,02	100	4,26	100	4,77	100			
NIc	2,90	49	4.51	104	2,71	54	2,88	68	2,63	55			
TN ^d	8,84	148	6,81	157	5,68	113	6.02	141	5,84	122			
F	7,11*		0,26 NS		2,51* 2,16 NS			4,36*					

PR = Produção relativa; 100 x estirpe n/estirpe SEMIA 6134.

a = Valores transformados para raiz de x.

c = Testemunha não inoculada.

d = Testemunha com N mineral.

^{* =} Significância estatística a 5% de probabilidade.

NS = Não-significativo a 5% de probabilidade.

TABELA 3. Efeito de genótipos dentro de estirpes no nitrogênio totala (mg/vaso), em centrosema
em vasos-Leonard; média de duas repetições, com três plantas por vaso.

	Estirpes													
Genótipos	55 L	PR	29 L	PR	29 LII	PR	116 L	PR	SEMIA 6134	PR	NIc	PR	TNd	PR
Itaguaí	9,07	100	7,13	100	4,24	100	7,38	100	5,96	100	2,90	100	8,84	100
C. bras.	5,87	65	5,96	84	5,19	122	5,88	80	4,33	73	4,51	156	6,81	77
CPAC 2006	5,38	65	2,94	41	3,20	75	2,57	35	5,02	84	2,71	93	5,68	77
CPAC 1987	3,54	59	2,93	41	2.50	59	2,54	34	4,26	71	2,88	99	6,02	68
CPAC 2047	4,76	52	3,60	50	2,93	69	3,42	46	4,77	80	2,63	91	5,84	66
F	20,17*		11,73*		5,07*		12,58*		14,82*		3,44*		21,64*	

a = Valores transformados para raiz de x.

Neste experimento, além da significância estatística para peso de nódulos secos, outro indicativo de especificidade hospedeira é o valor do N total associado ao peso de matéria seca da testemunha com N mineral, pois o material genético, apesar da sua heterogeneidade, foi similar para três dos cinco genótipos utilizados (Tabelas 2 e 4). Isto demonstra que onde o N não foi um fator limitante, a resposta dos genótipos foi semelhante, porém, quando dependente da simbiose, a resposta foi variável em função da estirpe que recebeu inóculo.

Embora o teste F a 5% para peso de nódulos secos tenha detectado efeito significativo para os fatores genótipo e estirpes apenas isoladamente, o valor de F calculado para a interação indica que a combinação dos fatores também foi importante no sistema, uma vez que esse teste esteve muito próximo do F crítico para a rejeição da hipótese de nulidade. Esta observação concorda com Date (1976), o qual afirma que, apesar de ser o genótipo a determinar qual a estirpe a produzir os nódulos, o genótipo, estirpe e ambiente atuam entre si, tanto no processo de infecção como no funcionamento da simbiose.

Por outro lado, tendo-se em conta que os testes de infectividade foram feitos sobre o híbrido Itaguaí, a sua superioridade sobre os demais (Tabela 1) pode ser explicada pela sua maior afinidade com as estirpes locais, uma vez que, segundo Trinick (1982), a afinidade leguminosa-rizóbio é um dos principais fatores envolvidos na eficiência simbiótica.

TABELA 4. Efeito de estirpes no rendimento de matéria seca² (g/vaso) em centrosema, em vasos-Leonard; média de duas repetições, com três plantas por vaso.

	Genótipos								
Estirpes	Itaguaí	C. bras.	CPAC 2006	CPAC 1987	CPAC 2047				
55 L	1,84	0,82	1,23	1,00	0,70				
29 L	1,40	0,94	0,80	0,95	0,66				
291 II	1,24	0,86	0,90	0,84	0,70				
116 L	1,48	0,82	0,76	0,80	0,50				
SEMIA 6134	1,40	0,66	1,08	1,01	1,34				
NIC	0,94	0,74	0,80	0,97	0,79				
TNd	1,74	0,94	1,38	1,40	1,39				

a = Valores transformados para raiz de x.

PR = Produção relativa; 100 x Itaguaí/genótipo n.

c = Testemunha não inoculada.

d = Testemunha com nitrogênio mineral.

Significância estatística a 5% de probabilidade.

c = Testemunha não inoculada.

d = Testemunha com nitrogênio mineral.

CONCLUSÕES

- 1. Todos os genótipos de centrosema apresentaram resposta à inoculação.
- 2. A quantidade de N fixada foi variável de acordo com o genótipo, a estirpe inoculada, e a interação entre genótipos e estirpes.

REFERÊNCIAS

- BOWEN, G.D. & KENNEDY, M.M. Heritable Variation in Nodulation of *Centrosema pubescens* Benth. Queensl. J. Agric. Sci., Brisbane, 18:161-70, 1961.
- DATE, R.A. Especificidad en la Simbiosis Rhizobium/Leguminosa. In: REUNION LATINOAMERICANA SOBRE RHIZO-BIUM, 8., Cali, CIAT, 1976. p.42-80.
- HALLIDAY, J. Field Responses by Tropical Forage Legumes to Inoculation with *Rhizobium*. In: SANCHEZ, P.A. & TERGAS, L.E. de. Pasture production in acid soils of the tropics. Cali, CIAT, 1979. p.123-37.
- NORRIS, D.O. The intelligent Use of Inoculants and Lime Pellecting for Tropical Legumes. **Trop. Grassl.**, Brisbane, 1(2):107-21, 1967.

- NUTMAN, P.S. Genetics of Symbiosis and Nitrogen Fixation in Legumes. Proc. Royal Soc. London, Series B, London, 172:417-37, 1969.
- SERPA, A. & CUNHA FILHO, L.A. Variação Hereditária e Ambiente dos Caracteres Número de Nódulos e Comprimento da Raiz Principal de *Centrosema pubescens* Benth. In: REUNIÃO LATINOAMERICANA DE RHIZOBIUM, 5, 1970. Anais... Rio de Janeiro, IPEACS, 1970. p.1-10.
- SPECHT, A.W.; ERMAN, L.W.; MEANS, V.M.; RESNICKY, J.M. Effect of Nutrition on *Trifolium hirtum* Inoculated with *Rhizobium trifolii*. Soil Science Society of America Proceedings, Madison, 29:489-95, 1956.
- TEDESCO, M.J. Métodos de análise de nitrogênio total Amônia, Nitrito e Nitrato em solos e tecido vegetal. Porto Alegre: Faculdade de Agronomia, UFRGS, 1978. 20p. (Informativo Interno, 01/78)
- TRINICK, M.J. Host-Rhizobium Associations. In: VINCENT, J.M. ed., Nitrogen Fixation in Legumes. Sidney, Academic Press, 1982. p.111-22.