COMPORTAMENTO DE CULTIVARES DE TRITICALE NO ESTADO DE SÃO PAULO NO PERÍODO DE 1985 A 1987¹

JOÃO CARLOS FELÍCIO, CARLOS EDUARDO DE OLIVEIRA CAMARGO, ANTONIO WILSON PENTEADO FERREIRA FILHO² e JAIRO LOPES DE CASTRO³

RESUMO - Foram avaliadas cultivares de triticale quanto à produtividade e resistência às doenças, em doze experimentos instalados em diferentes regiões do estado de São Paulo, entre 1985 e 1987. Estudou-se a correlação entre os dados do peso hectolítrico (PH) e o peso de mil sementes (PMS) obtidos nos ensaios de Maracaí. A análise conjunta dos experimentos demonstrou efeitos significativos para cultivar, locais e anos e não-significativo para a interação cultivar x ano. Destacaram-se as cultivares de triticale ITOC 841, ICT 8426, IAC 1, ICT 8433 e ICT 8439. Na região sul do Estado, em Capão Bonito, destacou-se a TCEP 8136. Cultivares de trigo IAC 5 e IAC 18, controles, foram superiores às de triticale somente nos ensaios de Cruzália. Ficou constatada a não-correlação entre o PH e o PMS. As cultivares de trigo apresentaram PH superior ao das cultivares de triticale, e o PMS de algumas cultivares de triticale foi superior ao da IAC 5. A ferrugem-da-folha ocorreu com maior intensidade na IAC 5, e todos os genótipos em estudos foram suscetíveis à helmintosporiose. Observou-se que as cultivares de triticale apresentaram maior resistência ao acamamento.

Termos para indexação: produção de grãos, peso hectolítrico, peso de 1.000 sementes, resistência a doenças.

BEHAVIOUR OF TRITICALE CULTIVARS IN THE STATE OF SÃO PAULO DURING THE PERIOD 1985-1987

ABSTRACT - Results of twelve experiments of triticale cultivars carried out at distinct regions of the State of São Paulo, Brazil, in the period 1985-1987, were evaluated to grain yield and resistance to diseases. The correlation between the hectolitric weight (HW) of the grains and the 1000 grain weight (1000 GW) in the trials carried out at Maracaí was studied. The analysis of variance of all the experiments taken together showed highly significant effects for treatments, locations and years. All interactions were significant except for treatment x year. The triticales ITOC 841, ICT 8426, IAC 1, ICT 8433 and ICT 8439 presented the best performance, At Capão Bonito the triticale TCEP 8136 exhibited good productivity. The wheat cultivars IAC 5 and IAC 18 were more productive than the triticale cultivars, only in the experiments carried out at Cruzalia. No significant correlation between HW and 1000 G.W. was found in the considered experiments. The triticale cultivars presented a superior HW in relation to the triticale cultivars; however, the 1000 GW of some triticale cultivars were superior to the wheat IAC 5. The occurrence of leaf rust at a superior levels in the wheat IAC 5 in relation to the other wheat and triticale cultivars under study was observed. All genotypes were sensitive to Helmintosporium sp. The triticale cultivar showed lodging resistance in relation to the wheat cultivars.

Index terms: grain yield, hectolitric weight, 1000 grain weight, resistance to disease.

INTRODUÇÃO

Originário do cruzamento interespecífico trigo/centeio, o triticale tem herdado certas características vantajosas de ambas as espécies, mas também alguns defeitos (Brunetta 1989).

Aceito para publicação em 24 de janeiro de 1990.

² Eng. - Agr., Inst. Agron. de Campinas (IAC), Caixa Postal 28, CEP 13020 Campinas, SP. Bolsista do CNPq.

³ Eng. - Agr., Estação Exp. de Capão Bonito, Inst. Agron. de Campinas (IAC), Caixa Postal 62, CEP 18300 Capão Bonito, SP.

Os triticales têm apresentado elevado potencial de rendimento, tolerância ao Al tóxico, bom tipo agronômico, resistência às ferrugens do colmo e da folha e ao ofdio, que são algumas das principais doenças que afetam o trigo. Entretanto, seu maior problema continua relacionado à má qualidade dos grãos. Tem apresentado maior suscetibilidade às doenças de espigas em relação ao trigo, e seus grãos germinam com facilidade, nas espigas quando ocorrem condições de alta umidade na fase de maturação. O peso hectolítrico é relativamente baixo, e os grãos armazenados são facilmente atacados por insetos.

Segundo Varughese et al. (1987), com o esforço do programa de triticale desenvolvido no
CIMMYT para o aumento de rendimento procura-se também conseguir uma adaptação mais
ampla, e deste modo obter triticales com bom
desempenho em diferentes condições agroclimáticas, se bem que, teoricamente, a constituição genômica do triticale proporcione um potencial intrínseco de adaptação a uma gama
mais ampla de condições que à correspondente
ao trigo. A falta de variabilidade dos primeiros
triticales, inclusive as linhas Armadilho, conferiu a esses uma capacidade de adaptação
muito limitada.

Waldman et al. (1987) caracterizam a interação genótipo x ambiente como um fator para determinar o grau de adaptabilidade diferencial, em genótipos de triticale quando ocorrerem variações ambientais de uma região para outra. O complexo ambiental, os menores índices pluviométricos no período de inverno e a acidez dos solos, são fatores que devem contribuir na avaliação específica de cada região na comparação do desempenho dos genótipos de triticale com a cultura tradicional de inverno, o trigo.

O presente trabalho teve por objetivo avaliar o desempenho de genótipos de triticale visando à seleção de cultivares com elevado potencial de produção de grãos e com adaptação à semeadura em épocas marginais à cultura do trigo no estado de São Paulo.

MATERIAL E MÉTODOS

Os experimentos foram conduzidos durante os anos de 1985 a 1987, nas seguintes localidades: Fazenda Santa Inês, no município de Maracaí; Fazenda Santa Lúcia, em Cruzália; Estação Experimental do IAC, em Capão Bonito; e na Fazenda Dois Irmãos, em Colômbia, SP. O delineamento estatístico empregado foi o de blocos ao acaso, com quatro repetições.

Foram utilizados vinte e cinco tratamentos (Tabela 1), sendo vinte e três cultivares de triticale e duas de trigo (IAC-5 e IAC-18). A sigla TCEP representa cultivares de triticale procedentes do Centro de Pesquisa da FECOTRIGO; PFT é a sigla que designa cultivares oriundos do Centro Nacional de Pesquisa de Trigo, ITOC e TOC da Organização das Cooperativas do Estado do Paraná – OCEPAR –, IT do Instituto Agronômico do Paraná –IAPAR –, e ICT do Instituto Agronômico de Campinas - IAC.

Nos três anos de experimentação, os ensaios foram semeados durante a segunda quinzena de abril nos municípios de Maracaí e Cruzália, e no segundo decêndio de maio, na Estação Experimental de Capão Bonito e em Colômbia, região norte do estado de São Paulo, com irrigação por aspersão. As parcelas foram constituídas de cinco linhas de 5 m de comprimento, a espaços de 0,20 m uma da outra, com espaçamento lateral, entre parcelas, de 0,60 m. A semeadura foi feita na base de 80 sementes viáveis por metro de sulco, equivalendo a 400 sementes por metro quadrado, e por ocasião da colheita foram colhidas as cinco linhas correspondendo a uma área útil de 5 m².

Foi utilizada uma adubação básica, aplicada a lanço, de 30 kg de N, 60 kg de P₂O₅ e 20 kg de K₂O, por hectare, nas formas respectivas de sulfato de amônio com 20% de N, superfosfato simples com 20% de P₂O₅, e cloreto de potássio com 60% de K₂O, respectivamente.

A avaliação do comportamento das cultivares em relação às principais doenças foi feita em campo, sob condições naturais de infecção, através de escalas de sintomas. As avaliações foram feitas em plantas adultas, examinando-se as folhas superiores em diversos pontos da parcela. Para a ferrugem-da-folha (Puccinia recondita Rob. ex. Desm. forma sp. tritici Ericks), empregou-se a escala de Cobb modificada, apresentada por Mehta (1978), que estima a percentagem de área de tecido atacada pelo fungo, na folha, e com uma letra simbolizando o tipo de reação. Para mancha foliar, provocada por Helminthosporium sp.,

estimou-se a percentagem de área lesada. A altura das plantas foi determinada levando-se em consideração a distância do nível do solo ao ápice da espiga, mantendo-se as plantas esticadas, excluindo-se as aristas. Os dados de produtividade, de peso hectolítrico (PH) e de peso de mil sementes (PMS), obtidos nos diversos experimentos, foram submetidos a análise de variância conjunta, sendo utilizados, para comparação das médias, o teste de Dunnet, para o parâmetro de produtividade, e o de Duncan, para peso hectolítrico e peso de mil sementes, conforme Pimentel-Gomes (1970).

RESULTADOS E DISCUSSÃO

A variabilidade de produção das culturas de inverno com relação ao ano foi observada, em

geral, em todos os experimentos estudados ao longo dos últimos anos. Os resultados da análise da variância conjunta, dos dados de produtividade, contidos na Tabela 2, revelam que o efeito de ano, de local e de cultivar foram significativos ao nível de 1%. Entretanto o resultado altamente significativo para local já era esperado, pois os ensaios conduzidos em Colômbia, SP, foram irrigados por aspersão, e os demais foram conduzidos em condições de sequeiro. A interação local x ano apresentou maior relevância do que as interações local x cultivar e cultivar x ano, esta última apresentando resultado não significativo. Os resultados sugerem que fatores como a presença da irrigação e períodos de inverno, diferenciados em cada ano, são condições que influenciam

TABELA 1. Relação dos tratamentos estudados com especificação do "pedigree" de cultivares de triticale e de trigo utilizado no presente trabalho.

Tratamento	Cruzamento/Pedigree							
1-CEP-15	PANDA "S" = M2A-CMLx8386-D-2Y-OM-110Y-103B-109Y-1Y-1M-100Y-0Y							
2-BR-1	PANDA M2A-CML-X 8386-D-OM-101Y-102B-107Y-0Y-OF							
3-PFT 7719	IRA - M2A = X 12055 - A - 1M - 2Y - 0Y							
4-PFT 7882	TEJON-BGL "S" = $X 16134 - 3Y - 1Y - 1M - 1Y - 1B - 0Y$							
5-CEP 18	TEDDY "S" = $X 19649 A-9Y - 1Y - 1M - 1Y - 100B - 0Y - 0A$							
6-PFT 7893	FS 3972 = 48M - ON - 0Y - 0F = BR 2							
7-ITOC 811	BGL "S" - M2A = X 18701 - 6Y - 3M - 2Y - 1M - 0Y							
8-TOC 8011 (A)	Ty-BGL = X 16134 - 908 PR-0T							
9-TCEP 8010	$LLMA-F_3$ SPY X BGL = B RB - 1008 - 101Y - 0B - 0A							
10-IAC-5*	FRONTANA/K 58//PG 1							
1-IAC-18*	BH 1146/4/S 12							
2-PFT 8036	DELFIN 80							
3-PFT 80110	M2A-BGL = X 15490							
4-IT 8029	DELFIN 75							
5-TOC 807	M2A-BGL (DELFIN)							
6-TOC 815	TJ-BGL = X 16134-503 PR-0T							
7-ITOC 841	TEJON-BEAGLE = X 16134-35Y-1Y-1M-1Y-1B-0Y							
8-TCEP 8117	M2A/KTZ 12//BGL = B-175-0A							
9-TCEP 8136	Wkale "S" = $X 33470$ -C - $1Y$ - $1M$ - $1Y$ - $2B$ - $0Y$ - $0A$							
20-ICT 8429	(ITYN) FS 1795-LNC "S" X 24369-4H-1Y-1M-1Y-OM							
1-IAC-1	JUANILLO 97 (ICT 8424)							
2-ICT 8433	MUS "S"-JLO "S" B-2659							
3-ICT 8439	(CML-PATO X KISS DWF/BGL) BGL "S" BB-823							
4-ICT 8426	TOPO 1419							
5-ICT 8437	MUSKOX S(2) B-2670							

^{*} Trigo.

na produtividade da cultura. Observações semelhantes já foram relatados por Felício et al. (1986 e 1987).

Para os locais estudados, o teste de Duncan ao nível de 5% de probabilidade apresentou a

seguinte classificação em relação à produção de grãos: Colômbia (a) com média de 3.332 kg/ha; em segundo lugar, Cruzália (b), com média de 1.764 kg/ha, não diferindo de Maracaí (b), com média de 1.743 kg/ha; e, por

TABELA 2. Produtividade média de grãos em kg/ha dos cultivares de triticale e trigo e resumo da análise da variância conjunta dos ensaios conduzidos nas localidades de Maracaí, Capão Bonito e Colômbia, no período de 1985 a 1987.

		Loc		Dunnet			
Cultivar	Mar.	Cruz.	C.B.	Col.	- Média	5%	1%
TTOC 841	2063	2060	1524	4027	2419	77	"
ICT 8426	2082	1825	1864	3773	2386	**	"
IAC 1	2287	1990	1445	3752	2369	**	"
ICT 8433	2016	1935	1830	3580	2340	**	**
ICT 8439	2172	1926	1757	3078	2233	**	"
TCEP 8010	1752	1925	1651	3575	2229 2224	**	NS NS
TCEP 8117	1747	1834	1719	3596		**	
TOC 815	1786	1813	1573	1573 3700		**	NS
PFT 7882	1954	1957 1524		3420	2214	**	NS
ICT 8429	1843	1775	1762 1620 1643	3429 3414 3400	2197 2195 2183	77 99 97	NS NS NS
TOC 8011	1848	1899					
ITOC 811	1903	1785					
TOC 807	1680	1746	1711	3489	2156	NS	NS
PFT 8036	1704	1691	1602	3584	2145	NS	NS
ICT 8437	1830	1765	1530	3382	2127	NS	NS
IT 8029	1538	1542	1787	3373	2060	NS	NS
TCEP 8136	1590	1444	1918	2773	1931	NS	NS
PFT 80110	1370	1581	1686	2909	1886	NS	NS
IAC 18	1639	2116	712	3067	1884	NS	NS
IAC 5	1752	2172	636	2622	1796	NS	NS
CEP 18	1441	1511	925	3227	1772	NS	NS
PFT 7893	1250	1428	911	3448	1759	NS	NS
BR-1	1612	1434	888	2897	1707	NS	NS
PFT 7719	1085	1440	771	2644	1507	NS	NS
CEP-15	1620	1508	886	3079	1779	testemunha	
Tratamento		-			6,93**		
Local					526,99**		
Ano					25,65**		
Cultivar x Local					1,78*		
Cultivar x Ano					1,03NS	S	
Local x Ano					15,30**		

[&]quot; - Tratamentos que diferem das testemunhas

NS - Tratamentos que não diferem da testemunha

^{** -} Significativo ao nível de 1%

^{* -} Significativo ao nível de 5%

último, a localidade de Capão Bonito (c), com média de 1.435 kg/ha. Explica-se esta classificação pelo fator irrigação, que proporcionou alta produtividade no primeiro local, ao passo que em Cruzália e Maracaf, por serem locais próximos e em condições de sequeiro, não houve variação significativa. Em Capão Bonito, provavelmente pelo fato de a semeadura ter sido realizada em época não favorável, foram obtidas as menores produções.

Dos anos em estudo, a melhor média de produtividade foi para 1985 (a), com 2.248 kg/ha, diferindo, portanto, pelo teste de Duncan a 5%, de 1987 (b), com 2.030 kg/ha e 1986 (c), com 1.928 kg/ha.

Na Tabela 2 verifica-se, pelo teste de Dunnett, para médias dos doze experimentos ao nível de 1% de probabilidade, que as cultivares de triticale ITOC 841, ICT-8426, IAC 1, ICT 8433 e ICT 8439 foram as mais produtivas e não apresentaram diferença significativa

TABELA 3. Peso hectolítrico (g/hl) e peso de mil sementes (PMS) em gramas dos ensaios de cultivares de triticale e trigo semeados na Fazenda Santa Inês em Maracaí, no período de 1985 a 1987.

Peso hectolítrico Peso de mil sementes Cultivar 1985 1986 1987 Média 1985 1986 Média 40,00 38.83 ab 76,80 a 39,00 37,00 IAC-5* 78,82 73,65 77,95 68,40 76,54 a 34,00 34,30 36,20 34,83 b-f 80,85 IAC-18* 80,39 38,60 34,40 30,50 34,50 b-f 74.63 ab 72,85 **CEP 15** 77,25 73,80 34.96 b-f 73,50 73,34 a-c 38,60 34,10 32,20 72,83 73,70 BR 1 68.30 72,23 b-c 27,00 33,60 31,80 30,79 e-f IT 8029 79,19 69,20 34,43 b-f 35,50 **CEP 18** 71,68 68,80 70,90 70.46 c-e 36,30 31,50 67,70 71,20 70,23 c-f 36,00 35,80 31,70 34,50 b-f **PFT 7893** 71,71 35,00 34,70 35,80 35,16 a-f 70,40 67,50 71,55 69.81 c-f ICT 8429 69,64 c-f 28,50 31,80 35,40 32,06 d-f PFT 80110 66,55 73,80 68.58 69,40 c-f 34,25 37,90 38,25 ab 68,70 42.60 ICT 8437 70,37 69,15 42,50 40.44 a 69,80 68,64 d-g 32,75 46,10 TOC 8011 68,54 67,60 65,50 68,80 68,44 d-g 31,65 33,90 35,50 33,55 b-f 71,04 **TCEP 8136** 31.90 31,35 d-f 68,50 66,85 67,80 68.02 c-h 26.25 35.90 **TOC 807** 67,30 68,10 68,01 e-h 32,00 36,90 34,80 34,56 b-f TCEP 8117 68,64 67,44 e-h 30,00 37,10 30,70 32,60 c-f PFT 8036 68,93 66,70 66,71 67,00 66,90 67,28 e-h 34,50 37,80 37,20 36,50 a-d ICT 8439 67,95 65,35 67,09 e-h 35,50 40,10 38,00 37,86 a-c ICT 8433 68,35 67,60 34,30 33,50 33.26 b-f **TCEP 8010** 69,95 65,00 65,20 66,71 e-h 32,00 33,90 36,73 a-d 64,30 65,60 66,54 e-h 35,50 40,80 69,74 IAC 1 66,31 e-h 28,50 29,80 30,50 29.60 f PFT 7719 67,80 64,05 67,10 66,10 e-h 38,50 36,80 38,20 37,83 a-c 69,04 63,87 65,40 **ITOC 841** 66.08 f-h 34,00 36,80 37,30 36,03 a-e 65.10 67.70 ICT 8426 65,45 33,59 b-f **TOC 815** 66,39 64,90 • 63,30 64,86 g-h 29,50 36,20 35,10 32,50 35,60 34,16 b-f 64,90 64,35 64,85 h 34,40 **ITOC 811** 65,31 34,50 30,00 35,06 a-f 65,17 62,80 64,05 64.00 h 40,70 PFT 7882

Médias seguidas por letras distintas diferem entre si ao nível de 5% de significância pelo teste de Duncan.

* Trigo

entre si, e portanto, poderiam ser utilizadas para cultivo nas regiões em estudo. Em um seplano situaram-se as cultivares TCEP 8010, TCEP 8117, TOC 815, PFT 7882, ICT 8429, TOC 8011 e ITOC 811. As cultivares de trigo em Maracaí, Colômbia e Capão Bonito apresentaram médias muito inferiores em relação às melhores cultivares de triticale. Na região de Capão Bonito, onde os ensaios foram conduzidos fora da época de semeadura recomendada para a cultura do trigo, na região sul do estado de São Paulo, destacou-se quanto à produtividade a cultivar de triticale TCEP 8136. Nos ensaios instalados em Cruzália, as cultivares de trigo IAC 5 e IAC 18 foram as mais produtivas, não diferindo, porém, das cultivares de triticale.

Na Tabela 3 estão relacionados os valores do peso hectolítrico (PH) e o peso de mil sementes (PMS) dos ensaios conduzidos no município de Maracaí no período em estudo, da-

dos, esses, que, correlacionados entre si, apresentaram r 0,0921, para um valor de t de 0,4430, nãosignificativo. Esse valor confirma o obtido por Felício et al. (1987), que verificaram a não-correlação entre esses dois componentes da produção, na cultura de triticale. As melhores médias de PH, entre as cultivares de triticale, foram obtidas por CEP 15 e BR 1, não diferindo, pelo teste de Duncan, das cultivares de trigo. Entretanto, para o PMS, as cultivares de TOC 8011. triticale ICT 8437, ICT 8433, ITOC 841. IAC 1, ICT 8439, ICT 8423, ICT 8429, PFT 7882 (último classificado por PH) e BR 1 não diferiram da cultivar de trigo IAC-5.

A ocorrência de doenças, como a ferrugemda-folha, tem-se verificado com baixa intensidade de ataque na cultura do trigo, provavelmente por causa do emprego constante de fungicidas pelos agricultores. Verifica-se, na Tabela 4, que a incidência de ferrugem-da-folha foi mais acentuada nos ensaios conduzidos em Maracaí, e que a maior incidência se deu na cultivar de trigo IAC-5. Para as manchas foliares, causadas principalmente por *H. sativum*, mas que englobam um complexo de doenças que ocorrem nas folhas, as cultivares analisadas não apresentaram resistência, independentemente do local em que o experimento foi instalado.

No estudo da altura, observou-se que, em geral, as cultivares de triticale se apresentaram com porte entre 90 e 115 cm, próximo ao das cultivares de trigo, porém com menor índice de acamamento, provavelmente por causa da melhor estrutura do colmo. Quanto ao ciclo, verificou-se, em geral, que as cultivares com melhor desempenho agronômico foram as consideradas como de ciclo médio.

TABELA 4. Leitura das moléstias ocorrentes nas cultivares de triticale e trigo nos ensaios instalados em Cruzália, Maracaí e Colômbia, contendo dados de altura (cm), acamamento (%) e do ciclo das cultivares.

Cultivar	F. folha		Mancha foliar			Altura média			Acamamento %			 .
	Cruz.	Mar.	Cruz.	Mar.	Col.	Cruz.	Mar.	Col.	Cruz.	Mar.	Col.	Ciclo*
CEP-15	0	0	80	40	30	70	105	90	20	0	0	Prec.
BR-1	0	t	80	40	40	55	95	90	20	0	0	Prec.
PFT 7719	0	0	60	60	40	78	85	93	0	0	40	Med.
PFT 7882	0	0	60	60	30	103	110	93	0	20	20	Med.
CEP 18	0	0	60	40	40	95	105	100	20	0	0	Prec.
PFT 7893	0	0	80	50	30	92	105	95	0	0	0	Prec.
ITOC 811	0	0	40	60	40	105	112	115	0	0	0	Tard.
TOC 8011	5S	10MS	40	50	40	106	125	135	0	20	0	Med.
TCEP 8010	5 S	20S	30	60	30	94	85	102	0	20	0	Tard.
IAC 5*	105	60S	40	80	20	105	120	95	20	40	20	Prec.
IAC 18*	20S	10MS	40	50	30	100	110	100	40	40	40	Prec.
PFT 8036	0	tS	50	40	30	90	110	115	0	0	0	Med.
PFT 80110	0	10S	40	50	40	92	100	105	0	20	0	Tard.
IT 8029	0	0	60	40	40	96	110	110	0	20	0	Med.
TOC 807	tS	10MS	50	40	40	100	105	115	20	20	0	Tard.
TOC 815	0	˙ O	40	40	30	100	117	115	0	0	0	Med.
ITOC 841	0	0	50	60	20	86	100	105	0	20	0	Med.
TCEP 8117	0	5MS	50	50	40	86	110	120	20	20	20	Med.
TCEP 8136	0	5S	50	40	40	80	102	110	0	0	20	Tard.
ICT 8429	tS	0	60	60	40	110	110	110	0	0	0	Med.
IAC 1	0	10MR	40	50	30	94	115	110	20	0	0	Med.
ICT 8433	0	tS	40	40	40	104	117	115	20	20	0	Med.
ICT 8439	0	0	50	60	30	105	110	110	0	0	0	Med.
ICT 8426	0	0	40	40	40	86	105	110	• 0	0	0	Tard
ICT 8437	0	5MR	50	50	40	85	95	115	20	0	0	Med.

^{*} Trigo

^{** =} Ciclo precoce, maturação de 120 dias, ciclo médio de 121 a 135 dias e tardio de 136 ou mais.

CONCLUSÕES

- 1. As cultivares de triticale ITOC 841, ICT 8426, ICT 8424, ICT 8433 e ICT 8439 destacaram-se quanto à produção de grãos nos anos em estudo, podendo ser utilizadas para cultivo nas diferentes regiões no estado de São Paulo.
- 2. As cultivares de trigo IAC 5 e IAC 18, utilizadas como controles, foram superiores na produção de grãos somente nos ensaios de Cruzália (Vale do Paranapanema).
- 3. A correlação entre o peso hectolítrico e o peso de 1000 sementes não apresentou resultado significativo; isto significa que deveria ser utilizado outro indicador para a comercialização do triticale que não seja o peso hectolítrico.
- 4. A cultivar de trigo IAC 5 apresentou maior suscetibilidade à ferrugem-da-folha, entre todas as cultivares estudadas, sendo que para a helmintosporiose todas as cultivares mostraram-se suscetíveis.

REFERÊNCIAS

BRUNETTA, D. Desempenho das linhagens de triticale em experimentação em 1985, no Centro-Sul do Paraná relacionado a Fatores Climáticos.

- In: REUNIÃO BRASILEIRA DE TRITICA-LE, 2, Campinas, 1987. Anais... Passo Fundo, EMBRAPA-CNPT/IAC, 1989. p.39-51.
- FELÍCIO, J.C.; CAMARGO, C.E.O; FREITAS, J.G.; FERREIRA FILHO, A.W.P.; BARROS, B.C.; CAMARGO, M.P.B. Avaliação de Genótipos de Trigo para a região do Vale do Paranapanema, no quadriênio 1981/84. Bragantia, Campinas, 45(2):257-77, 1986.
- FELÍCIO, J.C.; CAMARGO, C.E.O.; GALLO, P.B.; FREITAS, J.G.; SILVÉRIO, J.C. Avaliação de cultivares de triticale no Estado de São Paulo de 1982 1984. Bragantia, Campinas, 46(2):279-90, 1987.
- MEHTA, Y.R. Doenças do trigo e seu controle. São Paulo, Ceres, 1978. 190p.
- PIMENTEL-GOMES, F. Curso de estatística experimental. Piracicaba, ESALQ, 1970. 430p.
- VARUGHESE, G.; BARKER, T.; SAARI, E. Triticale. México, DF., CIMMYT, 1987. 32p.
- WALDMAN, L.; WESTPHALEN, S.L.; CAUMO, A. Resultados do Ensaio Regional e Brasileiro de Triticale em São Borja, nos anos de 1985 a 1986. Campinas, 1987. Mimeografado. II RNPTcL.