AVALIAÇÃO DE POPULAÇÕES DE MILHO SELECIONADAS PARA ADAPTAÇÃO AO INVERNO¹

ELÉUSIO CURVELO FREIRE² e ERNESTO PATERNIANI³

RESUMO - O programa de melhoramento do milho (Zea mays L.) para adaptação às condições típicas de inverno da região Centro-Sul do Brasil, vem sendo desenvolvido no Departamento de Genética da ESALQ/USP, com o objetivo principal de obter populações de porte normal e braquítico adequadas à exploração sob a forma de milho verde. Inicialmente, o caráter planta colorida de antocianina (genes A-B-PL), foi introduzido nas populações ESALQ VD2 e Piranão VD2, as quais possuem base genética ampla e são bem adaptadas ao cultivo no verão. As populações derivadas foram submetidas a ciclos de seleção massal durante as estações de inverno. A seleção massal para produtividade foi eficiente na melhoria da produção de espigas e adaptação das populações Piranão VD2-SI e ESALQ VD2-SI, às condições de inverno. A maioria das características consideradas nas avaliações visuais foi efetivamente modificada pelos ciclos de seleção massal, incluindo a cor dos grãos, número de fileiras/espiga, número de grãos/fileira, cor das plantas e dos sabugos. O caráter planta colorida de antocianina melhorou a adaptação das populações às condições de inverno e não induziu a nenhum efeito detrimental nos caracteres avaliados nesta pesquisa.

Termos para indexação: Zea mays, antocianina, seleção massal.

AVALIATION OF MAIZE POPULATION SELECTED FOR WINTER ADAPTATION

ABSTRACT - A maize (Zea mays L.) improvement program for winter cropping in Central-South Brazil have been conducted at the Department of Genetics of the ESALQ/USP. The main goal of the program is the development of normal as well as brachytic populations suitable to be grown in the winter for "green corn" consumption. Initially the anthocyanin plant color character (A-B-P\footnothing-genes) was introduced into the ESALQ VD2 and Piranão VD2 populations, which possess broad genetic basis and are well adapted to summer cropping. The derived populations have been subjected to cycles of mass selection during winter seasons. Mass selection for yield was effective in improving ear production and adaptation of Piranão VD2 SI and ESALQ VD2 SI populations to winter cropping. Grain color, number of rows/ear, number of kernels/row, lodging resistance, plant color and cob color were also improved through mass selection. The anthocyanin plant color character was effective for improving winter adaptation in the populations studied, with no detrimental effects on the other characteristics under evaluation.

Index terms: Zea mays, anthocyanin, mass selection.

INTRODUÇÃO

Nas regiões Centro e Sul do Brasil, o milho é plantado, geralmente, em outubro, e colhido a partir de abril. Este período coincide com a época do ano que apresenta condições climáticas mais favoráveis, com valores elevados de fotoperíodo, luminosidade, temperatura e insolação. Entretanto, existem muitas lavouras de milho plantadas fora desta época normal, especialmente para a comercialização de "milho verde", ou como

cultura alternativa de inverno, graças aos seus baixos custos de produção.

A demanda anual de "milho verde", apenas nos grandes centros consumidores da região Centro-Sul, foi estimada pelos autores em 69.000 t de espigas/ano, a partir dos volumes de milho comercializados nas Centrais de Abastecimento. Para atender a este mercado, os agricultores das principais regiões produtoras têm utilizado, em suas lavouras para os plantios de inverno, os mesmos híbridos usados para a produção de grãos no verão. Porém, tem sido observado que as características desejadas para o milho a ser consumido no inverno na forma verde nem sempre são levadas em conta na produção das sementes híbridas, atualmente disponíveis no mercado.

Considera-se que, para o cultivo bem sucedido de milho no inverno, será necessária a obtenção

Aceito para publicação em 25 de março de 1987.

² Eng. - Agr., M.Sc., Dr., EMBRAPA/Centro Nacional de Pesquisa de Algodão (CNPA), Caixa Postal 174, CEP 58100 Campina Grande, PB.

³ Eng. - Agr., Dr., Prof. do Curso de Pós-Graduação em Genética e Melhoramento de Plantas da ESALQ, CEP 13400 Piracicaba, SP.

de populações que apresentem boas características da espiga e grãos dentados amarelos, aliados a uma boa adaptação às condições climáticas menos favoráveis, vigentes no inverno (fotoperíodo mais curto, temperaturas e radiação solar mais baixas e precipitações menores) (Ikuta & Paterniani 1970).

Em ambientes de temperaturas baixas, como é usual nas grandes altitudes do México e do Peru, tem sido observado que as populações de milho nativas apresentam altas freqüências de plantas coloridas de antocianina. Esta constatação levou à hipótese de que a coloração escura das plantas seria vantajosa para os milhos cultivados em temperaturas baixas ou em condições de estresse (Hardacre & Eagles 1980).

No presente trabalho, procurou-se avaliar a adaptação das populações originais ESALQ VD2, Piranão VD2 e das populações resultantes, a partir de ciclos de seleção massal efetuadas no inverno, nas condições do estado de São Paulo.

MATERIAL E MÉTODOS

Três populações de milho de porte normal (variedade ESALQ) e três braquíticas (variedade Piranão) geneticamente relacionadas foram avaliadas em experimentos em faixa, com oito repetições, em cinco ambientes (Piracicaba - invernos de 1983 e 1984 e verão - 1983/84 e Anhembi - inverno - 1984, e verão - 1983/84).

As populações foram: 1. ESALQ VD2 e Piranão VD2; 2. ESALQ VD2 - SI 81 e Piranão VD2 SI 81 e 3. ESALQ VD2 - SI 82 e Piranão VD2 - SI 82, todas constituídas por germoplasma Tuxpeño, apresentando grãos dentados e amarelos. Estas populações foram obtidas da seguinte maneira: as populações ESALQ VD2 e Piranão VD2 foram os materiais originais obtidos junto ao Instituto de Genética da ESALQ, enquanto às demais populações foram derivadas destas primeiras. As duas populações básicas, ESALQ VD2 e Piranão VD2, foram cruzadas a partir de 1977, com uma linhagem da coleção da ESALQ, que apresentava o caráter planta colorida de antocianina (A-B-Pl). A população híbrida resultante foi submetida à ação de seleção natural através de plantio no campo, na época do inverno, em Piracicaba, SP. Procedeu-se a uma seleção massal nas plantas sobreviventes que apresentassem bons caracteres agronômicos (não acamadas, sem doenças e com boa produtividade) e boas características da espiga (bem empalhada, bem granada e de grãos dentados, de cor amarelo intenso). Nos dois primeiros ciclos se fez também seleção para plantas coloridas de antocianina, com sabugos brancos, para evitar o problema do arrocheamento dos grãos durante o cozimento, em caso de consumo do milho verde na forma de espigas cozidas.

As populações ESALQ VD2 SI81 e SI82, foram submetidas a 3 e 4 ciclos de seleção massal no inverno, respectivamente, enquanto as populações Piranão VD2 SI81 e SI82 passaram por apenas 1 e 2 ciclos de seleção massal no inverno, respectivamente.

As parcelas experimentais consistiram de fileiras de 10 m de comprimento com espaçamento de 1 m entre si. As populações de plantas altas e baixas ficaram dispostas em faixas diferentes, utilizando-se bordaduras adequadas para cada faixa. Nas parcelas, foram semeadas duas sementes a cada 40 cm, sem realização das operações de replantio ou desbaste, para permitir a livre atuação da seleção natural. O levantamento dos dados obedeceu aos critérios convencionais para a cultura, sendo realizado para os seguintes parâmetros: produção de espigas despalhadas em kg/ha corrigida para 15,5% de umidade, percentagem de tombamento, índice AE/AP, índice de espigas/planta, número de dias para os florescimento masculino e feminino, número de ramificações do pendão, estande final, percentagem de plantas roxas, percentagem de plantas doentes e de plantas improdutivas, percentagem de espigas doentes, percentagem de espigas com sabugos brancos, número de fileiras de grãos/espiga, númerode grãos/fileira e peso de 100 sementes.

Foram efetuadas análises individuais e conjuntas para cada característica. Após as análises de variância, efetuou-se a comparação entre médias de populações, através do teste de Duncan a 5%, e entre médias de portes e de ambientes, pelo teste F.

Foi feita uma avaliação dos efeitos dos ciclos de seleção, a nível de cada população e uma avaliação conjunta destes ciclos, nas duas populações. Para esta avaliação conjunta, reuniram-se as médias das populações originais (ESALQ VD2 e Piranão VD2) com a denominação de VD2, e os ciclos de seleção subsequentes, com as denominações: VD2 SI81 e VD2-SI 82.

RESULTADOS E DISCUSSÃO

Os valores dos coeficientes de variação foram considerados satisfatórios para todas as características avaliadas, com exceção das percentagens de plantas improdutivas e de plantas e espigas doentes, o que confere boa precisão relativa para este trabalho. (CV médios dos resíduos a, b, c estão apresentados no rodapé das Tabelas 1 a 6, porém os CV individualizados podem ser observados no trabalho de Freire (1985)).

Os resultados médios quanto à produção de espigas despalhadas a 15,5% de umidade e seus componentes, encontram-se na Tabela 1. Para a produção de espigas, foi observado que no

TABELA 1. Valores médios de produção de espigas (PF) a 15.5% de umidade, índice de espigas planta, número de fileiras de gráos espiga, número de gráos fileira e peso de 100 sementes obtidos de populações de porte normal e braquítico, incluindo os cicka originais e, melhorados para cultivo em condições de inverno, em cinco ambientes (Paracicaba - Inv 83, Inv 84, Verão 83 84 e Anhembrianes 4 e Paracicaba - Inv 84, Verão 83 84 e Anhembrianes 4 e Paracicaba - Inv 84, Verão 83 84 e Anhembrianes 4 e Paracicaba - Inv 84 e Paracicaba - Inv 85 e Paracic

		PE - kg/hs			Indice E/P - n	0	n ^o	filerras/espig	a·n [©]	п	o graios/fileir	a-n ^Q	Peso 100 sementes-g			
	Inv.	Verão	×	Inv.	Verāu	×	Inv.	Verão	x	Inv	Verão	 x	Inv	Verão	X	
ESALQ VD2	5.540b ⁸	5.376b	5.4740	0.86a	0,93a	0.89a	12,78a	13.29a	12.98a	34.19a	35,07ь	34,54a	34,58a	34,11a	34,39	
ESALQ VD2 SI81	5.824b	5.309b	5.618b	0,79b	0,89a	0,836	12.89a	12,97a	12.92a	34,67a	35.80ab	35.12a	34,79a	32,816	34,00	
ESALQ VD2 SI82	6.218a	5 850a	5.977a	0,85s	0,89a	0.87ab	12,95a	13,30a	13.09a	34,79a	36,41a	35,44a	35,59a	32,66n	34,42	
Médias	5.861a	5.512a	5.690	0,83b	0,91a	0.86	12,87a	13,19a	13,00	34,55b	35,76a	35,04	34,99a	33.196	34,27	
— Piranão VD⊋	5.711b	4.945в	5.405a	0,97a	0.86a	0,93a	12,58b	12,75a	12,65a	34,28b	34,14a	34.22b	35,13c	34,36a	34,821	
Piranão VD2 5181	5.943ab	4.700a	5.445a	0,87b	0,84ab	0,866	12,73ab	13.09a	12.87a	35.46a	34.65a	35,13ab	36.700	32,33b	34.951	
Piranão VD2 S182	6.249a	4.269b	5 561a	0,86b	dU8,0	0,83b	13,06a	12,74a	12.93a	36,10a	35,22a	35,75a	38,00a	33,67a	36,27	
Médies	5.968a	4 638b	5.470	0,90=	0,93b	0,87	12,79a	12,86a	12,82	35,28a	34,67a	35,04	36,61a	33,45n	35,35	
VD2	5.625b	5 161a	5.439	0,92#	0.90a	0.91	12,68c	13,02a	12,81	34.24b	34.61a	34.38	34,86b	34.234	34.60	
VD2 \$181	5 884b	5.004a	5.531	0,836	0.87ab	0.84	12,81b	13.03a	12.89	35.06ab	35,22#	35.12	35,75ab	32.57b	34,60	
V D2 S1 82	6 233a	5.072a	5.769	0,86n	0.84b	0.85	13,00a	13,02a	13.01	35.45a	35,82a	35,59	36,80a	33.16ab	35,34	
Medias	5.914	5.079		0.867	0,871		12,83	13,02*		34.92	35.22	· .	35.80	33.32**		

a Médias na mesma coluna por quadrícula e médias gerais nas hohas, seguidas pela mesma latra, não diferem significativamente entre si, ao nivel da 5% pelo teste de Duncan

TABELA 2. Valores médios de estande final, % de tombamento e nº de ramificações do pendão, obtidos de pupulações de porte normal e braquítico, incluindo os ciclos originais e, methorados para cultivo em condições de inverno, em cinco ambientes (Piracicaba - Inv/83, Inv/84, Verão-83/84 e Anhembi - Inv. 83 e Verão-83/84).

Populações ESALQ VD2	_		Estand	e final				Tom	barmento (acam	nº ramif, pendão					
	Invi	Inverno		Verão		<u>x</u>		inverno		Verão		x		: ramit, pend	
	√×	nº	√×	no	√x	u.	arc.sen $\sqrt{%}$		arc sen √%		arc sen $\sqrt{\%}$		Inverno	Verão	x
	5,446	29,6	6,116	37,3	5,71b	32,5	30,51a	25,8	26,18s	19.5	28,78a	23,2	20,394	25,07s	22.26a
ESALQ VD2 SIB1	6,02a	36,2	5,23b	38,8	6,11a	37,3	29,95a	24,9	23,12ь	15.4	27.21a	20,9	19,006	21,57b	20.03b
ESALQ V D2 SIB2	5,88s	34,6	6,51a	42,4	6,13a	37,6	30,73a	26,1	25,04ab	17,9	28,46a	22,7	18,916	22,676	20,416
Médias	5,78b		6,28a		5,98	35,8	30,39a	· .	24,78b		28,15	22,2	19,43b	23,11a	20,90
Piranão VD2	5,45b	29.7	5,80b	33,6	5.59b	31.2	21,30a	13,2	23,50a	15.3	22 18a	14,2	16.93b	15,32b	*****
Piranão VD2 S181	5,92a	35,0	6.39a	40.8	6,11a	37,3	16,49b	8,1	20,91s	12.7	18,26b	9.8	17,85ab	21,170	16,29b 19,18a
Piranão VD2 S182	5,99a	35,9	6.51a	42.4	6,20a	38,4	20,34a	12,1	21,82a	13,8	20,93ab	12,8	18,61s	21,80	19,18a
Média1	5,79b		6,24a	· ·	5,97	35,7	19,38a		22,08a	-	20,46	12,2	17,80h	19,43a	18,45
VD2	5,445	29,6	5,96c	35.5		31.9	25.91a	19.1	24,84a	17.6		18.7	18,66s	20,20b	19,27
VD2 \$181	5,97a	35.6	6.31b	39.8		37.3	23,220	15.5	22.02a	14.1		15.3	18,42a	21,37ab	19.60
V D2 S182	5.93a	35,2	6,52a	42.5	-	38,0	25,53a	18,6	23,43	15,B	-	17,7	18,76s	22,24a	20,14
Médies	5,78	33,5	6,26**	39,3			24,89	17,7	23,43	15,8		-	18,61	21,27**	

Médias na mesma coluna por quadirícula, e médias garais nas linhas seguidas pela mesma letra, não diferem significativamente entre si, ao nível de 5%, pelo teste de Duncan

CV testance final 4 5,87% CV tembermento + 29,96% CV nº ramif./pendão = 13,92%

inverno as populações melhoradas foram significativamente mais produtivas que as populações originais, em ambos os portes. As populações VD2-S182 foram estatisticamente superiores às populações VD2-S181, o que é uma evidência de que as populações selecionadas em 1981 ainda poderiam ser melhoradas para adaptação ao inverno. Freire (1985) confirmou esta hipótese, ao concluir que a população ESALQ VD2-SI 82 também poderia ser melhorada com progresso genético significativo, visto que apresenta bastante variabilidade.

De maneira geral, pôde ser observada uma tendência de, no inverno, as populações melhoradas para adaptação ao inverno (VD2-S182) serem estatisticamente superiores às populações originais (VD2), com relação à produção de espigas (10,8%), ao número de fileiras/espigas (2,5%), ao número de grãos/fileira (3,5%) e ao peso de 100 sementes (5,6%). Essas percentagens podem ser consideradas estimativas do progresso real obtido, devido aos ciclos de seleção massal/seleção natural, praticados nas populações originais após a incorporação do

Pesq. agropec. bras., Brasília, 23(5):481-487, maio 1988.

^{** *} Diferenças significativas aos níveis de 5% le 1%, respectivamenta, entre médias de um masmo caráter, pelo teste F

Os valores dos coeficientes de variação médios, referentes aos residuos a, b, e o foram os seguimes. CV-PE = 15,79%, CV - Índice E:P - 11,19%, CV - nº fileiras/espiga - 5,63% CV - nº grãos/fileira - 7,14% e CV - Peso 100 sementes + 8,34%.

Diferenças significativas ao nível de 1%, entre médias de um mesmo ceráter, pelo teste F.
 Os valores dos coeficientes de variação médios, referentes aos residuos a, b a c foram os seguintes: CV estande final « 5,87%

TABELA 3. Valores médios de altura de espiga (em), altura da planta (em) e indice altura da espiga/altura da planta, obtidos de populações de porte normal e braquítico, incluindo os ciclos originais e, melhorados para cultivo em condições de inverno, em cinco ambientes (Piracicaba - Inv/83, Inv/84 e Verão 83/84 a Anhembi - Inv/84 a Verão 83/84).

		Alture espiga (cm)			Altura planta (cm)	Indice AE/AP				
Populações	Inverno	Verão	×	Inverno	Verão		Inverno	Verão	×	
ESALQ VD2	106,4 ⁸ ∎	152,2	124,7∎	199.2a	240,1s	215,5a	0,52a	0,63a	0,57e	
ESALO VO2 SI81	102,5b	147,7b	120,5ь	194,4b	240,7a	212,9a	0,52a	0,616	0,55b	
ESALQ VD2 SIB2	101,66	143,3c	118,36	192,5b	229,1b	207,2b	0,52s	0,62a	0,566	
Médies	103,55	147,78	121,2	195,46	236,6e	211,9	0,52b	0,62s	0,56	
Piranão VD2	56,6s	93,3a	71,2s	134,1a	171,3a	149,0s	0,41a	0.54b	0,46b	
Piranão VD2 S181	56,9∎	95,1a	72,2a	131,5ab	170,6a	147,16	0,42a	0,56a	0,48a	
Piranão VD2 S182	58,2a	92,6a	71,9a	136,5a	171,40	150,5a	0,41a	0,54b	0,46b	
Médias	57, 2 6	93,6a	71,8**	134,0ь	171,1a	148,9**	0,416	0,55a	0,47**	
VD2	81,5a	100.9b	97,9	166.6a	205.7a	182,2	0,47e	0,59a	0,51	
VD2 S(81	79.7a	121 4s	96,3	162.9a	205,6a	180,0	0.474	0,584	0,51	
VD2 SI82	79,9a	117,9a	95,1	164,5a	200,3ь	178,8	0,478	0,58a	0,51	
Médias	80,3	113,4**		164,7	203.9**		0,47	0,58**		

Médias na mesma coluna por quadrícula a, médias garais nas tinhas, seguidas pela mesma letra, não difera significativamente entra si, ao nível de 5%, pelo teste de Duncan.

TABELA 4. Valores médios de % de sepiges com subagos bisacos (MESS), % de plantes coloridas e % plantes Roya intensa, obtifue de populações de porte normal e brequirileo, incluindo os cicira originais e, mehorados para cultivos em condições de inverso e em cince anámentes (Pusacións - breigh 5,110%) de Aprice plante (Aprice 10,10%) de Aprice plantes (Pusacións - 10,0%) a função de Pusación - 10,0%) a função de Pusación - 10,0% a função de Pusación

			Espigas of sab	ugos branc	;OE			% Plantes	colorides de I	intocienin	•	% Plantes Roxd Intenso						
Populações	Inverno		Ver≨o		x		inverno		Verão		×		Inverno		Verão		x	
	arc.sen	*	arc. sen	*	arc.sen	. *	ent. sen	*	arc.sen_	*	arc. 101)	*	ere, sen	*	ard. sen	*	arc.sen_	*
ESALG VO2	74,334	92,7	74,00a	92,4	74,198	92.6	30,13b	25,2	12,866	5,0	23,226	15,5	6.91b	1,5	6,625	1,3	6.97c	1,4
ESALQ VD2 5181 ESALQ VD2 5182	68,096 69,356	86,1 87,5	66,31c 68,14b	82,6 85,1	66,98b 68,86b	84,7 87,0	62,17a 60,07∎	78,2 75,1	45,18s 47,41a	50,3 54,2	65,37a 55,01a	67,7 67,1	35,57 33,60	33,8 30,6	21,79a 20,04s	13,8 11,7	30.06s 28,18b	25,1 22,3
Médias	70,59#		69,154		70,01	98,3	50,79e		35,156		44,53	49,2	25,364		16,15b		21,68	13,6
Piranão VD2	58,37b	72,5	61,69a	77,8	59.76a	74,7	27,47b	21,3	13,99b	5,6	22,08b	14,1	4,69b	0.7	4,33b	0,6	4,54b	0,6
Piranéo VO2 SI81 Piranéo VO2 SI82	62,44a 51,42a	78,6 77,1	60,49a 62,00a	75,7 78,0	61,66a 61,65a	77,5 77,5	54,53a 54,31a	66,3 66,0	40,64a 36,94a	42.4 38.1	48,98a 47,38a	56,9 54,1	28,57a 29,71a	22,9 24,6	16,63s 15,94s	8,2 7,5	23,79a 24,20a	16,3 16,8
Médies	60,754		61,46a		61,03**	76,5	45,441		30,52ь		39,47**	40,4	20,99a		12,30b		17,51**	9,0
VD2	66,354	83.9	87,94a	85.9		83,6	28,80c	23.2	13,42b	5,4		14.8	5,80b	1,0	5,47b	0.9		1.0
VD2 5181	65.274	82,5	82,906	79.2	-	B1.1	58,35≥	72,5	42,91a	46.3	•	62.3	32 074	28.2	19,21	10.8		20.7
VD2 5182	65,39a	82,6	65,075	82,2	•	82.2	57,19b	70, e	42,176	45,1	•	60,6	31,66#	27,5	17,99s	9.5		19,5
Médias	86.67	83.0	66.42	81,4			48,11	55.4	32.84**	29.4			23.18	15.5	14.22**	6.0		

Médias na mesma coluna por quadrícula, e médias gersis nas linhas seguides pela mesma letra, não diferem significativamente entre si, ao nível de 5%, pelo teste de Duncan.

caráter planta colorida de antocianina. Esses resultados evidenciam a eficiência do método de seleção massal/seleção natural, na melhoria da produção de espigas e dos componentes da produção em condições de inverno.

O índice E/P, considerado por alguns autores como um dos mais importantes parâmetros na seleção do milho verde, não foi considerado fator de seleção nestas populações, em face da margem de erro na interpretação dos resultados, visto que duas espigas pequenas podem não produzir mais grãos que uma espiga grande. Por este motivo, a produção de espigas despalhadas (PE) foi o parâmetro-chave na discussão dos progressos obtidos.

A não utilização do índice E/P nos ciclos de seleção explica o porquê da não-obtenção de ganhos nesta característica, nas populações melhoradas.

As comparações de médias em condições de verão demonstraram que as populações melhoradas para condições de inverno (VD2 - SI81 e VD2 - SI82) produziram 3,0% e 1,7% a menos, respectivamente, que as populações originais (VD2), demonstrando, assim, que os ciclos de seleção massal, à medida que contribuíram para aumentar a adaptação ao inverno, também foram efetivos na diminuição da adaptação às condições de verão. No verão, as populações melhoradas para

Diferences significations so nivel de 1% entre médies de um mesmo caráter, naio teste F Os valores dos coeficientes de variação médios, referentes aos resíduos a, b a o foram os seguintes

CV - altura planta = 6.15% CV - indice AE/AF = 5.46%

Média na mesma coluna por quasor sours, "montres" per de um mesmo caráter, pelo testa F.

Ca valores dos coeficientes de variación médias, referentes aos residuos a, b é o foram os seguintes: CV - espigas com sabugos brancos - 9.67%.

CV - % de pientes confrides de antocialmina - 11.97%.

CV - % de plantes roxo intenso = 20,67%

LABILLA 5. Valores médios de número de dias para o florescimento masculino (NFM) e feminino (NFF) obtidos de populações de porte normal e braquítico, incluindo os ciclos originais e melhorados para cultivo em condições de inverno, em quatro ambientes (Piracicaba - Inv/83, Inv/84 e Verão 83/84 a Anhembi-Verão 83/84).

			n ^o dies pare fic	prescimento d	t		n [©] dias para florescimento ♀								
Populaç <i>ões</i>	Inver	no	Versio			¥		no	Verão		\overline{x}				
	√×	νò	√× .	no.		uô.	√×	n <u>a</u>		nº.	√×	" no			
ESALQ VD2	9,216	85	7,91a	63	8,56a	73	9,32a	87	8,74a	68	8,96a	80			
ESALQ V D2 SIB1	9,11b	83	7,86b	62	8,49b	72	9,17b	B4	8,18b	67	8,84b	78			
ESALQ V 02 51 82	9,12b	83	7,81c	61	8,47b	72	9,18b	84	8,09c	65	8,82b	78			
₩édias	9,15a	-	7,86b		8,51	72	9,22a		8,17b		B,87	79			
Piranão VD2	9,31a	87	7,94e	63	8,629	74	9,39a	88	B,20s	67	8,99a	81			
Piranão VD2 SI 81	9,166	84	7,82b	61	8,49b	72	9,27b	86	8,19a	67	8,91b	79			
Piranão VD2 S182	9,186	84	7,82b	61	B,50b	72	9,26b	86	8,21a	67	8,91b	79			
Médias	9,21s		7,86b		8,54*	73	9,30a		8,206		8,94**	80			
VD2	9.26a	86	7,93a	63	-	73	9,35a	87	B,22e	68	•	80			
VD2 S181	9,13b	83	7,84b	61		72	9,22b	85	8,18ab	67		78			
VD2 S1B2	9,15b	84	7,826	61	•	72	9,22b	85	8,15b	66	-	78			
Médias	9,18	84	7,86**	62			9,26	86	8,19**	67					

Médies na mesma coluna por quadrícula, e médies gerais nas tinhas, seguidas pela mesma letra, não diferem significativamente entre si, ao nível de 5% pelo taste de Duncan.

TABELA 6. Valores medios de % de espigas duentes, % de plantas improduívas e % de plantas duentes, obtidos de populações de porte normal a braquitico, incluindo os ciclos exiginais e, melhorados para cultivo em condições de invemo, em curco ambientes (Pizacisaba - Inv/83, Inv/84 e Verão 83/84 e Anhembi - Inv/84 e Verão 83/84).

			% са вър-даз	doentes				%	de plantes in	produtiva	4 ^b	% de plantes doentes ^C						
Papulações	inverno		Verão		×		Inverno		Versio		x		nuer	rno V		T o		x
	arc. sen	. *	erc. sen	**	erc. sen	*	arc. sen	- *	arc. sen	. *	ere.sen	- *	arc. sen	- *	erc. sen	- *	arc sen √%	%
ESALQ VO2	17,29a	9,8	24,17b	16,8	20,04ab	11,7	18,35a	9,9	16,614	8,2	17,84a	9,4	14,67a	6,4	5,87∎	1,1	10.27a	3.2
ESALO VO2 SIB1	16.63a	8,2	28,55a	22 B	21,40a	13,3	17,150	8,7	18,12s	9.7	17,64a	9,2	9,914	2,9	10,37s	3,2	10,14a	3.1
ESALO VD2 SIB2	13,06b	Б,1	25,68b	18,8	18,116	9,7	17,414	8,9	17,83a	9,4	17,62a	9,2	10,02=	3,0	9,68a	3;8	9,85a	2,9
Médias	15,66b		28,13a		19,85	11,5	17,64a		17,520		17,70	9,3	11,53s	-	8,64a		10,09	3,1
Piranão VD2	17,7Qa	9,2	25,88b	19,0	20.98	12.8	22,40	14.5	20,45a	12,2	21.43	13,3	15,94	7,5	7,02a	1,5	11,48=	4,0
Piranão VD2 S181	18,39a	9.9	26,66b	20,1	21,70a	13,7	18,62b	10,2	21,83a	13,8	20,22	11,9	11,63s	4.1	12,22a	4.5	11,92a	4,3
Firando VD2 S182	17.99a	9,5	29.60a	24,4	22,63s	14,8	20,61eb	12,4	21,64a	13,6	21,13a	13.0	10,754	3,5	10,69a	3.4	10,72s	3.5
Médies	18,03b		27,384		21,77 *	13,7	20,548		21,310	•	20,93**	12,7	12,778		9,98a	-	11,38	3,9
VD2	17,50a	9.0	25,02=	17.9	٠.	12.2	20.374	12.1	18,534	10,1		11,3	15,30a	7,0	6,45b	1,2		3,6
VD2 SIB1	17 51s	9.0	27 60a	21,4		13.5	17,89a	9.4	19,97	11,7		10.5	10,77b	3.5	11,29a	3,8		3,7
VD2 \$182	15,524	7,2	27,64s	21,5		12,2	19,014	10.6	19,745	11,4	,	11,1	10,39b	3.2	10,19a	3,1		3,2
Médias	16,84	8,4	26,75**	20,2			19.09	10,7	19,42	11,1			12,15	4,4	9,31*	2.6		

Médias na mesma coluna por quadrícula, e médias gerais nas linhas seguides pela mésma latra, não diferem significativamente entre si, ao nível de 6%, pelo teste de Duncan.

as condições de inverno apresentaram, também, valores inferiores de índice de espigas/planta (5,0%), peso de 100 sementes (4,0%) e valores equivalentes de número de fileiras de grãos, além de valores superiores de número de grãos/fileira, em relação às populações originais.

A comparação das produtividades das populações obtidas no inverno e no verão evidenciou que todas as populações foram, em média, 16,4% mais produtivas no inverno em relação ao verão. Estes resultados discordam dos obtidos por Ikuta & Paterniani (1970) e Menezes et al. (1976), que observaram reduções drásticas na produtividade do milho, quando plantado no inverno. Porém, ao contrário do realizado neste trabalho, aquelas pesquisas foram conduzidas sem irrigação e comparando diversas variedades e híbridos desenvolvidos para condições de verão e, em sua maioria, não adaptadas ao inverno. Este aumento de produtividade no inverno em todas as populações evidencia, também, que todas apresentavam alta variabilidade e potencial para adaptação e melhoramento para as condições de inverno, como comprovado por Paterniani & Ikuta (1978). Porém, em condições de inverno mais rigoroso, as populações com o caráter planta colorida de antocia-

Diferences significatives aos níveis de 5% e 1% respectivamente, entre médias de um mesmo caráter, pelo teste F.

Os valores dos coeficientes de variação médios, referentes aos resíduos e, b e o forem os seguintes: CV - nº de diss p/ florescimento d = 0,97 % CV · nº de dies p/ florescimento 9 = 0,99%

Os valores dos coeficientes de verlação médios, referentes sos residuos a, b e citoram os sejuintes: CV - % de espiges doentes = 27,41%.
CV - % de plante improduírias = 29,33%.
CV - % de plantes: emproduírias = 29,33%.

nina apresentariam a vantagem de garantia da produtividade, devido à melhor adaptação às baixas temperaturas, como comprovado por Chong & Brawn (1969).

As comparações de médias para estande final, percentagem de tombamento e número total de ramificações do pendão, estão apresentados na Tabela 2. A comparação de médias de estandes finais pelo teste de Duncan a 5%. demonstrou que houve pressão de seleção natural no sentido de redução dos estandes, no inverno, e que a pressão de seleção natural atuou mais a nível das populações originais que das populações selecionadas para adaptação ao inverno, em todos os ambientes.

As percentagens de tombamento no inverno e verão foram praticamente equivalentes, com médias de 17,7% e 15,8%, respectivamente, porém entre os portes estas médias foram bastante diferentes, tendo as populações de porte normal apresentado 22,2% de tombamento e as de porte baixo 12,2%, o que representa uma redução de 45% no tombamento, graças ao efeito da diminuição do porte. Resultados semelhantes foram obtidos por Castro (1983).

O número de ramificações do pendão no inverno foi significativamente inferior ao número de ramificações no verão, em ambos os portes. Porém, as populações de porte normal apresentaram um número de ramificações 11,7% superior ao das populações braquíticas, em concordância com os resultados de Castro (1983).

As comparações de médias para alturas da planta, da espiga e índice AE/AP, encontram-se na Tabela 3. Pode ser observado que, em condições de inverno, ocorreu uma redução acentuada na altura da espiga, altura da planta e índice AP/AE, de 29%, 19% e 20%, respectivamente, em relação aos cultivos de verão. A redução da biomassa vegetal devida à diminuição da temperatura já tinha sido relatada por diversos autores, como Jong et al. (1982). As populações de porte normal, melhoradas para adaptação ao inverno, apresentaram médias de altura de espiga e da planta, significativamente menores que a população original, tanto no inverno como no verão, enquanto as po-

pulações braquíticas tiveram médias de altura da espiga e da planta semelhantes às da população Piranão VD2.

As comparações de médias para coloração das plantas e dos sabugos estão apresentadas na Tabela 4. Observa-se que as populações melhoradas para adaptação ao inverno apresentaram percentagem de plantas coloridas de antocianina e percentagem de plantas de cor roxo intenso, superiores, estatisticamente, às populações originais, em todos os ambientes e portes, o que é uma indicação de que a técnica utilizada para a introdução e adaptação dos genes para planta colorida de antocianina ao complexo gênico das populações, foi bastante eficiente. Observou-se, também, que a percentagem de plantas coloridas de antocianina e a percentagem de plantas roxo intenso apresentaram-se significativamente mais elevadas no inverno que no verão, em concordância com as observações e hipóteses levantadas por Hardacre & Eagles (1980).

As comparações de médias para número de dias para os florescimentos masculino e feminino, constantes da Tabela 5, evidenciaram tendência, das populações que receberam o caráter planta colorida, de serem mais precoces que as populações originais em todos os ambientes e portes avaliados. Estes dados apóiam a hipótese de Brawn (1968), segundo a qual as plantas coloridas seriam mais precoces, devido à sua maior capacidade de absorção e armazenamento de calor.

As percentagens médias de plantas e espigas doentes e de plantas improdutivas constam da Tabela 6. Pode ser observado, para essas três características, que houve uma tendência de, no inverno, as plantas melhoradas para adaptação ao inverno apresentarem menos plantas e espigas doentes e improdutivas, enquanto no verão ocorreu o inverso. Esses resultados vêm apoiar a hipótese de que o melhoramento de populações para condições específicas de inverno ou verão, tendo por critério principal a produtividade, provoca, também, modificações em outras características importantes para a boa aclimatação dos materiais, devido à atuação contínua e específica para cada ambiente das forças de seleção natural (Marshall 1982) e da seleção artificial praticada.

CONCLUSÕES

- 1. A seleção massal para produtividade, efetuada nas plantas sobreviventes ao inverno, foi eficiente na melhoria da produção de espigas e adaptação das populações Piranão VD2 SI e ESALQ VD2 SI às condições de inverno características da região Centro-Sul do Brasil.
- 2. As populações melhoradas para tolerância ao inverno foram significativamente mais produtivas, em relação às populações originais, em condições de inverno (+ 10,8%), e quase se equipararam em condições de verão (-1,7%).
- 3. As características consideradas nas avaliações visuais foram efetivamente modificadas pelos ciclos de seleção massal, incluindo a cor dos grãos, o número de fileiras/espiga, número de grãos/fileira, a cor das plantas e dos sabugos. O tombamento não foi afetado pelos ciclos de seleção.
- 4. O cultivo do milho em condições de inverno resulta em estandes menores, plantas e espigas mais baixas, ciclo mais longo, e menores prolificidade e número de ramificações do pendão, além de maior percentagem de plantas doentes do que nos cultivos de verão.

REFERÊNCIAS

- BRAWN, R.I. Breeding corn earliness. In; CORN AND SORGHUM RESEARCH CONFERENCE, 23, Illinois, 1968. Proceedings. Washington, 1968. p.59-66.
- CASTRO, E. da M. de. Competição entre populações de milho normais e braquíticas. Piracicaba, ESALQ, 1983. 155p. Tese Doutorado.
- CHONG, C. & BRAWN, R.I. Temperature comparisons of purple and diluite sun red anthocyanin color types in maize. Can J. Plant Sci., 49:513-6, 1969.
- FREIRE, E.C. Melhoramento do milho (Zea mays L.) para adaptação às condições de inverno da Região Centro-Sul do Brasil. Piracicaba, ESALQ, 1985. 168p. Tese Doutorado.
- HARDACRE, A.K. & EAGLES, H.A. Comparisons among populations of maize for growth at 13°C. Crop Sci., 20:780-4, 1980.
- IKUTA, H. & PATERNIANI, E. Programa de milho "verde". Relat. Ci. Inst. Genét. Esc. Sup. Agric. Luiz de Queiroz, 4:58-61, 1970.
- JONG, S.K.; BREWBAKER, J.L.; LEE, C.H. Effects of solar radiation on the performance of maize in 41 successive monthly plantings in Hawaii. Crop Sci., 22:13-8, 1982.
- MARSHALL, H.G. Breeding plants for less favorable environments. New York, J. Wiley Interscience, 1982, p.47-70.
- MENEZES, D.M. de.; CEZAR, T.I. OLIVEIRA, M.F. de. Viabilidade da obtenção de "milho verde", na Baixada Fluminense, em condições de inverno. Pesq. agropec. bras. Sér. Agron., 11(12):53-8, 1976.
- PATERNIANI, E. & IKUTA, H. Comportamento do milho Centralmex selecionado em dois tocais. Relat. Ci. Inst. Genét. Esc. Sup. Agric. Luiz de Queiroz, 12:168-72, 1978.