ESPECIFICIDADE E COMPETITIVIDADE DE ESTIRPES DE RHIZOBIUM EM CENTROSEMA SOB CONDIÇÕES CONTROLADAS¹

CÉSAR H. BEHLING MIRANDA², NELSON FREDERICO SEIFFERT³ e SEBASTIÃO M. SOUTO⁴

RESUMO - Foram conduzidos dois experimentos em casa-de-vegetação, em areia-vermiculita, com a finalidade de comparar a eficiência e especificidade entre onze estirpes de Rhizobium e três centrosemas - Centrosema sp GC 372/79, Centrosema sp (híbrido interespecífico Itaguaí) e C. macrocarpum CIAT 5065 - e identificar a estirpe de Rhizobium responsável pela formação de nódulos no híbrido Itaguaí quando feita inoculação com mistura de estirpes. A estirpe C-106, isolada de C. pubescens, apresentou peso de nódulos, N-total e eficiência relativa significativamente maiores (p < 0,05) do que as demais estirpes. Entretanto, mostrou-se incapaz de formar nódulos quando inoculada junto com a estirpe C-551, isolada igualmente de C. pubescens, ou formou pequena percentagem de nódulos quando em mistura com outras duas estirpes. A estirpe C-551 mostrou-se pouco eficiente, mas altamente competitiva, sendo capaz de formar de 70% a 100% dos nódulos quando inoculada em conjunto com outras três estirpes. Dentre os materiais estudados, o híbrido Itaguaí apresentou melhor peso de nódulos, produção de matéria seca e N total.

Termos para indexação: fixação biológica de N2, leguminosas forrageiras, inoculação.

SPECIFICITY AND COMPETITIVENESS OF RHIZOBIUM STRAINS IN CENTROSEMA UNDER CONTROLLED CONDITIONS

ABSTRACT - Two green-house experiments with a sand-vermiculite substrate were conducted to compare the efficiency of 11 *Rhizobium* strains with three centrosema species (*C. macrocarpum* CIAT 5065, *Centrosema* sp GC 312/79, and an interspecific hybrid between '*C. pubescens, C. virginianum* and *C. brasilianum* (Itaguaf hybrid), and to study the competitivity of four strains of *Rhizobium* in the Itaguaf hybrid. Strain C-106 isolated from *C. pubescens* was superior to the others in all centrosemas tested when inoculated as single strain. However, in the presence of strain C-551 (also isolated from *C. pubescens*) it did not cause the Itaguaf hybrid to nodulate, and formed only few nodules in a mixture with two other strains. The strain C-551, in spite of its low efficiency, has shown high competitiveness and formed from 70% to 100% of the nodules when inoculated in a mixture with three strains. Among the centrosemas studied, the Itaguaf hybrid was superior in nodulation, growth, and nitrogen fixation.

Index terms: nitrogen fixation, forrage legumes, inoculation.

INTRODUÇÃO

Observou-se em vários trabalhos (Döbereiner 1971, Lopes et al. 1972, Norris 1966, 1972), que leguminosas tropicais não necessitam ser submetidas a inoculação, em parte por não serem específicas em relação a determinada espécie de Rhizobium, em parte porque estirpes capazes de nodulá-las são amplamente encontradas nos solos tropicais.

Algumas espécies e cultivares de gêneros considerados previamente como promíscuos, no entanto, apresentam grande especificidade (Norris 1958,

Trinick 1968, Campêlo & Döbereiner 1969). Para Centrosema em particular, altos graus de especificidade foram encontrados, a ponto de variações de nodulação dentro de linhagens serem descritas (Bowen 1959, Bowen & Kennedy 1961, Franco et al. 1973, Serpa & De-Polli 1976). Esta especificidade faz com que sejam necessários trabalhos paralelos de avaliação com estirpes pré-selecionadas ou com nova seleção de estirpes, quando da introdução ou melhoramento de genótipos desta forrageira.

Neste trabalho, são discutidos dois experimentos, nos quais estudou-se a especificidade de três novas introduções de centrosema e onze estirpes de *Rhizobium*, bem como a competitividade de quatro destas estirpes entre si por sítios de nodulação.

MATERIAL E MÉTODOS

Experimento 1: Seleção de estirpes de Rhizobium para Centrosema spp.

Foram usados três materiais de Centrosema: o híbrido

Aceito para publicação em 17 de abril de 1985.

Eng. - Agr., M.Sc., EMBRAPA/Centro Nacional de Pesquisa de Gado de Corte (CNPGC), Caixa Postal 154, CEP 79100 Campo Grande, MS.

Eng. - Agr., M.Sc., EMBRAPA/CNPGC.

Eng. - Agr., Ph.D., EMBRAPA/Unidade de Apoio ao Programa Nacional de Pesquisa em Biologia do Solo, km 47, CEP 23460 Seropédica, RJ.

sintético Itaguaf, obtido do cruzamento de C. pubescens X C. virginianum X C. brasilianum, o C. macrocarpum CIAT 5065, e o ecótipo nativo dos cerrados, não classificado, GC 372/79.

Usaram-se onze estirpes de Rhizobium (Tabela 1), quatro delas oriundas da UAPNPBS/EMBRAPA, km 47, RJ, isoladas de C. pubescens, e as restantes em viagem de coleta realizada na região do vale do rio Araguaia, pelos estados de Mato Grosso do Sul, Mato Grosso e Goiás, isoladas de solos onde cresciam centrosemas nativos.

Fizeram-se três repetições por tratamento, considerando-se cada estirpe e planta um tratamento; usaram-se ainda dois tratamentos-testemunhas sem inoculação: um, adubado com 700 mg de N mineral, e outro, sem adubação. Como fonte de N mineral nas testemunhas, usou-se NH₄NO₃, fazendo-se aplicação parcelada em quatro vezes de 200, 200, 200 e 100 mg/vaso aos 15, 30, 40 e 45 dias após o plantio, respectivamente.

O experimento foi instalado em vasos de Leonard (Vincent 1970), usando-se como substrato 500 g da mistura 2:1 de vermiculita e areia, esterilizada em autoclave.

Fez-se irrigação constante durante o período experimental com solução nutritiva sem nitrogênio, como descrito por Vincent (1970).

Em cada vaso, foi transplantada uma semente pré-germinada em estufa a 30°C, previamente desinfectada e escarificada com H₂SO₄ concentrado por 20 minutos, e lavagens sucessivas com água deionizada estéril. Fez-se inoculação, ao plantio, das estirpes em teste, através de dispersão sobre a semente de 1 ml de calda inoculante contendo, em média, para todas as estirpes, 10⁸ células viáveis por ml de calda.

Por ocasião do plantio, foram adicionados, em todos os tratamentos, 15 mg de NH₄NO₃, visando fornecer su-

porte nitrogenado até o início da fixação efetiva que, segundo observações preliminares, começa entre 20 e 30 dias após o plantio.

Os tratamentos foram distribuídos ao acaso, mantidos sobre mesas em casa-de-vegetação e trocados casualizadamente duas vezes no decorrer do experimento.

Aos 55 dias após o plantio, foi feita a coleta, cortando-se as plantas à altura do colo e separando-se parte aérea e raízes; a parte aérea foi deixada em estufa a 70°C, até secagem completa, determinando-se a produção de matéria seca e o seu conteúdo em N total pelo método Kjeldhal, como descrito por Bremner (1965).

Os nódulos foram destacados das raízes e pesados após secagem a 105°C, até peso constante.

Experimento 2: Competição de estirpes por sítios de nodulação no híbrido Itaguaí.

O híbrido Itaguaí recebeu inoculação com quatro estirpes individuais (C-551, C-106, CEN GG 26 e CEN GC 29), seis misturas destas estirpes combinadas duas a duas, uma mistura das quatro estirpes individuais, e dois tratamentos-testemunhas: um com e outro sem N mineral, como descrito no experimento 1, totalizando treze tratamentos.

Foram usadas para cada tratamento em que a inoculação foi individual, sem mistura, 10⁸ células viáveis/vaso. Nos tratamentos com mistura de duas estirpes, cada estirpe participou com 10⁴ células viáveis/vaso e, no tratamento com mistura das quatro estirpes, cada uma participou com 10² células viáveis/vaso. A condução deste experimento foi semelhante à do anterior, excetuando-se a etapa relacionada à identificação das estirpes nos nódulos.

De cada repetição foram tomados, casualizadamente, dez nódulos secos, e fez-se a identificação, por sorologia,

TABELA 1. Local de origens das estirpes nativas de Rhizobium e algumas características dos solos de origem e das estirpes.

Estirpes	Origem	Características químicas do solo				Crescimento em meio de cultura	Crescimento em meio de cultura	
		pН	AI	Ca	Mg	ácido ^a	com sulfato de estreptomicina (mg/1) ^b	
CEN GC 26	Cáceres, MT	5,64	0,28	7,66	2,26	+	60	
CEN GC 28	Barra do Garças, MT	nd	nd	nd	nd	+	30	
CEN GC 29	S. Félix do Araguaia, MT	nd	nd	nd	nd	+	45	
CEN GC 30	Água Boa, MT	5,01	0,92	0,31	0,22	+	45	
CEN GC 36	Barra do Garças, MT	5,04	0,46	1,38	0,76	+	45	
CEN GC 42	Guerova, MT	5,12	0,61	0,56	0,33	+	30	
CEN GC 45	Itapiraporã, MT	5,19	0,46	0.34	0.18	+	60	

nd - Não determinado

^{+ -} Crescimento semelhante ao da testemunha, sem condições limitantes, pH ≈ 7

a - Meio I/quido, como descrito por Keyser & Munns (1979), com adição de 50 ppm de AI, como AIK (SO₄)₂. 12H₂O e pH₌ 4,8

b • Nível no qual o crescimento foi semelhante ao da testemunha sem estreptomicina.

da estirpe presente, usando a técnica de imunoaglutinação como resumida por Miranda (1983).

RESULTADOS

Experimento 1: Seleção de estirpes de Rhizobium para Centrosema spp.

Peso seco de nódulos

No ecótipo GC 372/79, a estirpe C-106 foi superior às demais, seguida da ARG-9. No híbrido Itaguaí, as duas não diferiram entre si, e foram superiores às demais, e, na cultivar CIAT 5065, as estirpes C-106, ARG-9, C-100 e CEN GC 29 não diferiram entre si, e foram superiores às demais (Tabela 2).

Peso seco da planta

O híbrido Itaguaí produziu 24% a mais de matéria seca em comparação com o ecótipo GC 372/79, e este produziu 107% a mais, em relação à cultivar CIAT 5065.

Os materiais, quando inoculados com a estirpe C-106, apresentaram maior produção de peso seco. O efeito desta estirpe no híbrido Itaguaí foi 110%

superior ao demonstrado pela testemunha com N mineral, e não diferiu deste tratamento nos outros dois materiais (Tabela 2).

Nitrogênio total

O híbrido Itaguaí produziu 40% e 150% de N a mais do que o ecótipo GC 372/79 e a cultivar CIAT 5065, respectivamente, e o efeito da estirpe C-106 foi significativamente superior às demais estirpes, independentemente dos materiais estudados (Tabela 2).

Eficiência relativa (Er)

Eficiência relativa é a relação percentual entre o N-total do tratamento com inoculação, em comparação ao N-total da testemunha sem inoculação e adubada com N mineral. Esta testemunha tem seu N-total considerado como valor 100.

A estirpe C-106 mostrou no híbrido Itaguaí uma Er igual a 150, e no ecótipo GC 372/79 e na cultivar CIAT 5065 foi de 103 e 82, respectivamente (Tabela 2).

Eficiência simbiótica (Es)

Eficiência simbiótica é o parâmetro definido

TABELA 2. Efeito de estirpes de Rhizobium na nodulação e no desenvolvimento das centrosemas GC 372/79, Itaguai e CIAT 5065. Cada valor é média de tês repetições.

Estirpe [®]	Peso seco de nódulos (mg/p1)			Paso seco planta (g/pl)			N-total plants (mg/p1)			Eficiência relativa (%)		
	GC 372/79 ^d	Ita guai d	CIAT 5065	GC 373/79	Itaguaí	CIAT 5065	GC 372/79	Itaguaí	CIAT 5065	GC 373/79	Itaguaí	CIAT 506
C-551 [®]	51	57	48	1,02	0,65	0.52	22	16	12	43	30	70
C-106 ⁴	190	275	45	2,53	3,04	0.61	54	81	14	103	150	82
C-100 [®]	48	43	44	0,42	0,64	0.45	4	15	10	8	28	59
ARG-9	117	218	58	0.86	1,55	0.47	- 14	28	11	27	51	65
CEN GC 28	24	47	30	0,67	1,11	0,63	15	30	12	29	55	70
CEN GC 28	o	42	0	0,43	0,80	0.22	9	8	2	17	15	12
CEN GC 29	30	49	43	0,72	1,32	0,58	15	20	10	29	37	59
CEN GC 30	0	0	0	0,31	0,72	0,36	2	9	6	4	17	35
CEN GC 36	ō	Ò	o	0.25	0.65	0.46	2	10	5	4	19	29
CEN GC 42	63	71	28	0,78	1,05	0.29	12	24	4	23	44	23
CEN GC 45	68	76	27	1,08	1,09	0.45	24	20	9	46	37	52
Testemunha + N ^D	o o	0	0	2,26	1,45	0,44	52	54	17	100	100	100
Testemunha ^C	0	_ 0	0	0,36	0,51	0,18	5	10	2	10	19	12
Fontes de veriação F ⁸		Fª .			F.0			F				
Centrosema (C) 42**		52**			149**			27**				
Estirpe (E)	133**			119**			101**			43**		
CxE	10**			13**			20**			5**		
CV (%)		18		23			32			28		

⁸ Dados originais transformados em √n + 1

^b Testemunha sem inoculação, adubada com 700 mg NO₃NH₄ parcelada em quatro aplicações

C Testemunha sem inoculação, sem adição de N mineral

d GC 372/79 (Centrosema sp) Itagual (C. pubescens x C. virginianum x C. brasilianum); CIAT 5065 (C. macrocarpum)

Estirpes isolades de C. pubescens; demais estirpes ver Tabela 1.

Percentual de N - total em releção a testemunha + N (700 mg/vaso).

pela regressão obtida entre o logaritmo decimal do N-total da planta sobre seu peso seco de nódulos, e que permite avaliar a quantidade de N fixado por unidade de tecido nodular (Döbereiner et al. 1966).

Foi encontrada correlação altamente significativa de r = 0,85 com coeficiente de regressão b = 0,25, ou seja, cada mg de nódulos proporcionou acréscimo de 0,25 mg de N-total, independentemente da estirpe ou variedade usada.

Experimento 2: Competição de estirpes por sítios de nodulação no híbrido Itaguaí.

Os resultados deste experimento podem ser visto na Tabela 3.

A estirpe C-106, como no experimento 1, proporcionou significativamente maior peso de nódulos (p < 0,05) e N-total do que as outras estirpes estudadas neste experimento.

As estirpes CEN GC 26 e 29, quando submetidas a inoculação cada uma junto com estirpe C-106, mostraram maior peso de nódulos do que as inoculações isoladas daquelas estirpes, apesar de não se observarem aumentos no N acumulado. Por outro lado, todos os nódulos formados no tratamento com mistura das estirpes C-551 e C-106 foram formados apenas pela primeira estirpe, como pode ser observado na percentagem de ocorrência das estirpes identificadas nos nódulos amostrados (Tabela 3).

DISCUSSÃO

O híbrido de centrosema Itaguaí produziu maior nodulação e N-total do que os outros dois materiais usados neste experimento, CIAT 5065 e GC 372/79 (Tabela 2). Atualmente, a cultivar CIAT 5065 tem sido considerada como o centrosema que melhor se adaptou aos cerrados na Colômbia (Bradley et al. 1983) e no Brasil.

A estirpe C-106, isolada de plantas de Centrosema pubescens, foi a que melhores resultados apresentou, independentemente dos materiais de centrosema e dos parâmetros avaliados no experimento 1 (Tabela 2). Em outras avaliações, em que se usou um solo LVE intermediário para areia quartzosa da região dos cerrados, com escassa população de Rhizobium capaz de nodular Centrosema, a estirpe C-106 manteve, no híbrido Itaguaí, uma alta eficiência relativa (ER = 109) em comparação à testemunha adubada com 100 kg/ha de N:

Entretanto, além da eficiência de uma estirpe, é necessário conhecer outras características condicionantes de seu efetivo estabelecimento no campo, como a sua capacidade de competir com estirpes já estabelecidas no solo por sítios de nodulação e seu potencial saprofítico (Freire et al. 1983). Isto é evidenciado nos resultados do experimento 2 (Tabela 3). Fazendo-se o reconhecimento da pre-

TABELA 3. Nodulação, N-total e percentagem de ocorrência de estirpes de Rhizobium inoculadas no híbrido Itaguaí, individualmente ou em mistura. Cada valor é média de três repetições.

Estirpes	Peso seco de nódulos** (mg/p1)	N-total (mg N/p1)**	Ocorrência das estirpes nos nódulos*
C-551	92 c	16,1 bc	100% C-551
C-106	270 a	81,1 a	100% C-106
GC 26	40 e	26,9 b	100% GC 29
C-551 + C-106	37 e	21,4 b	100% GC 551
C-551 + GC 26	85 cd	19,1 bc	100% GC 551
C-551 + GC 29	74 cd	32,1 b	70% C-551 + 30% GC 29
C-106 + GC 26	116 b	30,0 ь	60% C-106 + 40% GC 26
C-106 + GC 29	. 111 b	23,2 b	20% C-106 + 80% GC 29
GC 26+ GC 29	70 d	19,5 bc	60% GC 26 + 40% GC 29
C-551 + C-106 + CG 26 + GC 29	48 e	18,8 bc	85% C-551 + 10% C-106 + 5% GC 29
Testemunha + N	0	32,0 b	0
Testemunha	0	4.9 c	0

Foram analisados 30 nódulos, tomando-se dez de cada repetição em cada tratamento.

^{**} Em cada coluna, números com mesmas letras não diferiram estatisticamente ao nível de 5% de probabilidade.

sença de cada estirpe individualmente nos nódulos após a coleta, verificou-se que a estirpe C-106 foi incapaz de formar nódulos na presença da estirpe C-551; na presença da CEN GC 29, formou 20% do total de nódulos; na presença da CEN GC 26, formou 60%, e submetida a inoculação com as três em conjunto formou apenas 10% do total de nódulos. Dessa forma, a estirpe mais eficiente nos três centrosemas estudados mostrou-se pouco competitiva quando na presença de outras estirpes.

Sua introdução em uma área poderia ser comprometida, dependendo da existência e da capacidade competitiva de estirpes nativas capazes de nodular centrosema.

A estirpe C-551, embora pouco eficiente, foi igualmente capaz de nodular os três centrosemas e mostrou-se altamente competitiva.

Ela foi capaz de inibir totalmente a formação de nódulos pelas estirpes C-106 e CEN GC 26, e predominou significativamente sobre a CEN GC 29 e sobre as três estirpes quando submetida a inoculação conjuntamente.

Os resultados obtidos confirmam mais uma vez a complexidade da interação Rhizobium - Centrosema. É evidenciada a necessidade de trabalhos paralelos com ambos os simbiontes, para se estabelecer com segurança uma estirpe ou conjunto de estirpes como padrão para inoculante. É particularmente importante o conhecimento do potencial competitivo das estirpes escolhidas.

REFERÊNCIAS

- BOWEN, G.D. Specificity and nitrogen fixation in the *Rhizobium* symbiosis of *Centrosema pubescens* Benth. Queensl. J. Agric. Sci., 16(4): 267-82, 1959.
- BOWEN, G.D. & KENNEDY, M.M. Heritable variation in nodulation of *Centrosema pubescens* Benth. Queensl. J. Agric. Sci., 18:161-71, 1961.
- BRADLEY, R.S.; AYARZA, M.A.; MENDEZ, J.E. & MORRIONES, R. Use of undisturbed soil cores for evaluation of *Rhizobium* strains and methods for inoculation of tropical forrage legumes in a Colombian Oxisol. Plant Soil, 74:237-47, 1983.
- BREMNER, J.M. Total nitrogen. In: BLACK C.A., ed. Methods of soil analysis. Madison, Am. Soc. Agron., 1965, part. 2, cap. 83, p.1149-78.

- CAMPÉLO, A.B. & DÖBEREINER, J. Estudo sobre inoculação cruzada de algumas leguminosas florestais. Pesq. agropec. bras. Sér. Agron., Rio de Janeiro, 4: 67-72, 1969.
- DÖBEREINER, J. Inoculação cruzada e eficiência da simbiose de leguminosas tropicais. In: DÖBEREINER, J.; EIRA, P.A. da; FRANCO, A.A. & CAMPÉLO, A. B., eds. As leguminosas na agricultura tropical. Rio de Janeiro, IPEACS, 1971. p.181-91.
- DÖBEREINER, J.; ARRUDA, N.B. de & PENTEADO, A. de F. Avaliação da fixação do nitrogênio em leguminosas pela regressão do nitrogênio total das plantas sobre o peso dos nódulos. Pesq. agropec. bras., Rio de Janeiro, 1:233-7, 1966.
- FRANCO, A.A.; SERPA, A. & SOUTO, S.M. Simbiose de estirpes homólogas com linhagens de Centrosema pubescens. Pesq. agropec. bras. Sér. Zoot., 8:13-7, 1973.
- FREIRE, J.R.J.; KOLLING, J.; VIDOR, C.; PEREIRA, J. S.; KOLLING, I.G. & MENDES, N.G. Sobrevivência e competição por sítios de nodulação de estirpes de Rhizoblum japonicum na cultura da soja. R. bras. Ci. Solo, 7: 47-53, 1983.
- KEYSER, H.H. & MUNNS, D.N. Tlerance of rhizobia to acidity, aluminum, and phosphate. Soil Sci. Soc. Am. J., 43(3):518-23, 1979.
- LOPES, E.S.; LOVADINI, L.A.C.; GARGANTINI, H. & IGUE, T. Número mais favorável e eficiência de Rhizobium autóctone para soja perene e siratro em quatro grandes grupos de solos do Estado de São Paulo. Bragantia, 31(20): 235-48, 1972.
- MIRANDA, C.H.B. Metodologia de avaliação de estirpes de *Rhizobium* em nódulos de leguminosas. Campo Grande, EMBRAPA-CNPGC, 1983. 24p. (EMBRAPA-CNPGC, Documentos, 12).
- NORRIS, D.O. A red strain of Rhizobium from Latononis bainesii Baker. Aust. J. Agric. Res., 9:629-32, 1958.
- NORRIS, D.O. The legumes and their associated *Rhizobium*. In: DAVIES, E., ed. Tropical legumes. London, 1966. p.89-105.
- NORRIS, D.O. Leguminous plants in tropical pastures. Trop. Grassl., 6(3): 159-69, 1972.
- SERPA, A. & DE-POLLI, H. Variabilidade genética da simbiose Centrosema - Rhizobium. Pesq. agropec. bras. Sér. Zoot., Rio de Janeiro, 11(5): 29-32, 1976.
- TRINICK, M.J. Nodulation of tropical legumes. I. Specificity in the *Rhizobium* symbiosis of *Leucaena leucocephala*. Exp. Agric., 4:243-53, 1968.
- VINCENT, J.M. A manual for the pratical study of the root nodule bacteria. s.l., Blackwell Sci., 1970. 1964p.