AVALIAÇÃO ECONÔMICA E AGRONÔMICA DE UM EXPERÍMENTO COM FEIJÃO COMUM UBERABA, MINAS GERAIS ¹

STANLEY F. MILLER³, GEORGE R. BAUWIN³ e RICARDO J. GUAZZELLI⁴

SINOPSE.- Com a finalidade de estudar as possibilidades de aproveitamento dos cerrados da região para o cultivo do feijão, foi analisada a influência, na produção, de cinco níveis de N e P₂O₅ utilizando-se um fatorial 5 × 5 completo. A partir dêsse esquema experimental comparou-se a eficiência de quatro outros delineamentos. Um esquema central composto mais os extremos teve eficiência equivalente ao do fatorial 5×5 completo e foi utilizado na interpretação econômica. Determinou-se a superfície da resposta dos insumos e produção e as combinações de nutrientes que resultaram nos lucros máximos. Finalmente, na última parte do trabalho foram feitas considerações sôbre procedimentos alternativos do uso dos insumos face a variações dos preços do produto dos insumos.

Introdução

A definição de economia agrária, a necessidade de análise das funções de produção, a filosofia e tipos dos modelos das funções de produção usadas nessa ciência e as limitações dos delineamentos empregados para produzir dados para as funções de produção foram apresentados em artigo prévio por Bauwin et al. (1967).

A parte experimental do trabalho faz comparações de diversos delineamentos, sendo alguns dêles específicos para estimar superfícies de respostas. Os resultados de um delineamento foram empregados para demonstrar os princípios gerais de análise econômica.

Os dados, contudo, foram provenientes de uma pes-

quisa de casa de vegetação.

O objetivo dêste estudo é complementar êsses resultados pela comparação dos mesmos delineamentos em condições de campo cerrado e apresentar uma demonstração prática de análise econômica e de interpretação de dados.

MATERIAL E MÉTODOS

O ensaio foi conduzido na Estação Experimental do Instituto de Pesquisas e Experimentação Agropecuárias do Centro-Oeste (IPEACO), em Uberaba, Minas Gerais, em latossolo vermelho-amarelo (fase cerrado), com declividade de 2% e exposição sul. A área experimental antes da instalação do teste era coberta por gramíneas nativas não tendo sido ainda cultivada.

Algumas características do solo foram determinadas segundo métodos da Divisão de Pedologia e Fertilidade do Solo do Escritório de Pesquisas e Experimentação (Vettori 1966) e são apresentadas no Quadro 1. Estes dados mostram a fertilidade muito baixa da área.

O delineamento experimental foi um fatorial 5 × 5 completo com as parcelas distribuídas em blocos ao acaso. Cada tratamento foi replicado três vêzes. As parcelas mediam 6,0 × 2,5 m. O pH do solo foi ajustado para aproximadamente 6,00 pela aplicação de 4.000 kg//ha de calcário fino (88% CaCO₅ e 2% MgCO₅), um mês antes do plantio. O calcário foi aplicado em cobertura e, em seguida, incorporado com grande de disco. Plantou-se a variedade de feijão comum (*Phaseolus vulgaris*), Rico 23, em 13 de fevereiro de 1967. Foram plantadas 5 fileiras por parcela e 3 sementes por cova. As distâncias entre fileiras e entre covas eram, respectivamente, de 0,5 e 0,25 m. Foi feito o desbaste para duas plantas por cova 30 dias após o plantio.

Os tratamentos incluíam nitrogênio e fósforo. O nitrogênio foi incluído como uma variável porque ainda não foi desenvolvido um inóculo de confiança para essa região do Brasil. As fontes de P₂O₅ e N, foram superfosfato triplo e sulfato de amônio. Tôdas as parcelas rece-

QUADRO 1. Análise química do solo=

pН	Disponível		Trocável						Saturação — de
	M. Org.	Р	Н	Al	Св	Mg	K	Na	bases
	(%)	(mg/100g)				(mg/100g)			(%)
4,95	0,95	1,36	3,27	0.24	0,67	0,12	0,15	0,07	23,59

Para uma profundidade de solo de 0—15 cm.

Recebido 8 out. 1970, aceito 10 nov. 1970.

Este trabalho foi conduzido como um projeto da Aliança para o Progresso pelo contrato USAID/IRI no Brasil.

² Economista agrícola, Instituto de Pesquisas IRI, Rio de Janeiro, GB.

⁸ Especialista em Fertilidade de Solo, Instituto de Pesquisas IRI, Rio de Janeiro, GB.

⁴ Eng.º Agrônomo da Estação Experimental de Uberaba, do Instituto de Pesquisas e Experimentação Agropecuárias do Centro-Oeste, Uberaba, Minas Gerais.

beram como adubação básica, por hectare: 30 kg de K_aO , na forma de cloreto de potássio, 10 kg de Zn (sulfato de zinco), 1 kg de B (bórax) e 50 kg de enxôfre (gêsso). Um têrço do N e os outros nutrientes foram aplicados por ocasião do plantio, a 5 cm ao lado e a 5 cm abaixo do nível das sementes. O restante N foi aplicado em cobertura três semanas após o plantio. As condições de clima durante a condução do ensaio foram consideradas suficientes para uma boa produção. Os rendimentos foram determinados colhendo-se as três fileiras centrais e eliminando-se 0,5 m nas extremidades das parcelas. As parcelas que receberam fósforo foram colhidas no dia 2 de maio e as restantes em 13 de maio. Ainda que outras funções pudessem exprimir os resultados (Bauwin et al. 1967), a função quadrática

$Y = b_0 + b_1 N + b_2 P + b_{11} N_+^2 b_{22} P_+^2 b_{12} N P$

foi usada. Neste modêlo, $Y = \text{rendimento estimado em} \ kg/ha$, $b_t = \text{coeficientes parciais de regressão e } N \ e \ P$ são os níveis de nitrogênio e P_2O_5 em kg/ha.

RESULTADOS, DISCUSSÃO E CONCLUSÕES

Fase agronômica

Os rendimentos são apresentados no Quadro 2 com os resultados de um fatorial completo 5×5 .

QUADRO 2. Produtividade média do feijão em kg/ha

Ŋ			P ₂ O ₅ (kg/ha)	•••	
(kg/ha)	0	50	100	150	200
0 25	100- 86	307 356	877	859	418
50 75	92 97	345 492	462 478 480	546 535 567	573 689 660
100	107	392	536	735	678

[·] Cada número é a média de três observações.

Respostas significativas foram obtidas pelo nitrogênio e fósforo (Quadro 3).

QUADRO 3. Análise de variância dos rendimentos de feijão: fatorial 5 × 5 completo

Fonte de variação	Grau de liberdade	Quadrados médios	Valor de F	
Total	74			
Blocos	2	22084	4,09*	
Tratamentos	24	118496	21,94**	
N P	4	67349	12,47**	
	4	594369	110.07**	
NxP	16	12314	2,28*	
Erro	48	5400	•	

P = 0.05, P = 0.01.

Os rendimentos baixos obtidos no nível O de P₂O₆ foram devidos em parte à elevada mortalidade de plantas. Estas parcelas tinham aproximadamente menos 30% de plantas do que aquelas que receberam fósforo. Outra observação com respeito a fósforo foi o seu efeito na floração e maturação. O início da floração deu-se 37 dias após o plantio, para as parcelas que receberam fósforo, e 43 dias para as outras. Parcelas com fósforo foram colhidas com 78 dias, enquanto as outras o foram com 89 dias após o plantio.

Fase estatística

Várias combinações de tratamentos de um fatorial completo 5×5 (tomadas como standard) podem ser agrupadas para formar os diversos delineamentos demonstrados no Quadro 4. Obviamente, se um dêsses delineamentos pode dar resultados equivalentes aos obtidos pelo fatorial completo 5×5 , isto será muito mais eficiente. Os custos com experimentação poderiam ser reduzidos considerávelmente pela diminuição assim obtida no número de parcelas.

QUADRO 4. Comparação de delineamentos

Níveis dos		Fatoriais		Central	Central
tratamentos	5 x 5	3 x 3	3 x 3	comp.	extremos
N_1P_1	x .	1			
N1P2 N1P8 N1P4 N1P6 N2P1 N2P2	ì	-			x
N ₁ P ₂	ŝ	1		x	I
N_1P_4	Ī			-	. •
N_1P_5	x	I			x
N_2P_1	x				
N_2P_2	I		X.	x	x
N ₂ P ₈	x		I		
N ₂ P ₈ N ₂ P ₄ N ₂ P ₅ N ₃ P ₁	x		I	x	x
N.P.	X X	_		_	_
NaPa	x	x	x	x	X
N ₃ P ₂ N ₃ P ₃	â	x	x x	x	x
NaPa	x	-	Ŷ	•	•
N ₃ P ₄ N ₈ P ₅ N ₄ P ₁	x	x	_	x	x
N_4P_1	x	-		-	_
N.P.	r		x	I	x
N4P8 N4P4 N4P5 N5P1 N5P2 N6P3	x		x		
N ₄ P ₄	x		¥	x	I
N ₄ P ₅	x		,		
N _b P ₁	x	×			I
Nora Nora	x	_			
N.D.	x x	x		x	I
N_5P_4 N_5P_5	×	x			_
*10± b	•	<u> </u>			x

Estes delineamentos alternativos podem ser comparados como foi feito numa publicação prévia (Bauwin et al. 1967) na base de critérios empíricos como falta de ajustamento, coeficientes de regressão, R² e valores preditos versus observados.

A análise de variância para regressão dos rendimentos de feijão em cada delineamento é dada no Quadro 5. Pode ser notado que a fonte de variância para regressão para cada delineamento é significativa para P = 0,05 ou maior. Contudo, a fonte de variação para desvio de regressão é também significativa para todos os delineamentos (exceto o "pequeno" e "grande" fatorial 3 × 3). Desde que o quadrado médio e valor de "F" para as últimas fontes de variação são menores em comparação com aquelas de regressão, pode ser concluído que as equações de predição das relações de produção são satisfatórias exceto no que diz respeito ao mencionado fatorial 3 × 3 "pequeno".

Os coeficientes de regressão para cada delineamento são apresentados no Quadro 6 e, com base nos testes de "F", indicam resultados significativos para os parâmetros N, P, NP e P" para todos os delineamentos, exceto o central composto e fatorial 3 × 3 "pequeno". Os valores de R², no Quadro 6, denotam a proporção da variação de rendimento que pode ser atribuída à regressão. O delineamento com o mais elevado R² é o fatorial 3 × 3 "grande" enquanto que o menor R² é encontrado no

QUADRO 5. Análise de variância para regressão dos rendimentos de feijão por delineamento

Fonte de variação	Graus de liberdade	Quadrados médios	Valor de l
Fatorial 5 x 5			
Total	74		
Blocos	2	22048	4.09*
Regressão	5	532704	98,65**
Desvio de regressão	19	9494	1,76*
Êrro	48 -	5400	-
Fatorial 3 x 3 "grande"			
Total	26		
Blocos	2	4721	1,20
Regressão	5	267849	68,26**
Desvio de regressão	3	8841	2,25
Érro	16	3924	
Fatorial 3 x 3 "pequeno"			
Total	26		
Blocos	2	21640	2,68
Regressão	5	26146	3,24*
Desvio de regressão	3	5207	0,65
Êrro	16	8064	
Central composto			
Total	26	10782	
Blocos	2	86874	1,77
Regressão	5	21155	20,77**
Desvio de regressão	3	6082	3,48*
Êrro	16		
Central composto mais extremos			
Total .	38		
Blocos	. 2	9277	1,85
Regressão	5	289511	57,78**
Desvio de regressão	7	12818	2,56*
Êrro	24	5011	

^{*}P = 0.05 **P = 0.01.

fatorial 3×3 "pequeno". As diferenças extremas entre os dois fatoriais 3×3 confirmam as dificuldades encontradas em espaçar três níveis de nutrientes de modo a obter uma boa estimativa dos coeficientes de regressão e cobrir adequadamente as zonas de respostas ótimas (Bauwin et al. 1967, Natn. Acad. Sci. 1961).

Os rendimentos observados e estimados para pontos selecionados de todos os delineamentos, exceto o fatorial 3×3 "pequeno", são apresentados no Quadro 7. Para os pontos comuns a todos os delineamentos os valores observados e estimados são bem aproximados. Para os pontos extremos há boa aproximação com exceção do central composto.

As relações gerais entre os delineamentos experimentais são semelhantes àquelas obtidas em casa de vegetação, conforme (Bauwin et al. 1967). Do ponto de vista de eficiência, parece-nos que o delineamento central composto mais os extremos fornecem informação equivalente ao do fatorial standard 5 × 5, com uso de menores recursos e, assim, será utilizado na fase econômica do trabalho.

Os valores observados e estimados de rendimentos de feijão para todas as combinações de tratamentos são apresentados no Quadro 8.

Fase econômica

A maximização de uma utilidade depende de duas ordens de relações: 1) a função de produção ou superfície, e 2) as relações entre prêço da utilidade (feijão, no caso) e o prêço dos insumos ou fatôres de produção. Para avaliar o uso de N e P2Os na produção de feijão é necessária a estimativa das porções econômicamente relevantes da superfície de utilidade — insumo dos nutrientes da planta, sem o que se torna impossível o uso de princípios econômicos dedutivos para determinar as quantidades e combinações de nutrientes de plantas que resultaram nos lucros máximos. Contudo, o conhecimento da superfície de produção é insuficiente para maximizar os lucros a menos que o produtor tenha contrêle sôbre os preços de utilidades e insumos ou tenha condições de fazer predições livres de êrro. Esta situação raramente existe mas, dentro de certos limites impostos pelo conhecimento, os lucros podem ser maximizados.

Função de produção

Em sua forma mais simples, a produção de utilidades é função de uma variável.

Estimativas das respostas de N com P₂O₅ mantido constante a níveis pré-determinados de N possibilitam variações dêsse nutriente nos níveis empregados, conforme é ilustrado na Fig. 1. Esta função relaciona os rendimentos que podem ser esperados da utilização de níveis selecionados do insumo. Uma função similar para

QUADRO 6. Parâmetros estatísticos por delineamento a

Efeitos		Fatorial	Central	Central		
	5 x 5 "grande" 3 x 3		"pequeno" 3 x 3	composto	composto mais ext.	
Constante	84,681903	75,175920	270,111100	-85,037037	78,293094	
И	1,595962**	2,169444**	1,162222	5,781111*	2,944311*	
P	4,299543**	4,165833**	2,103333**	5,848333**	4,378822**	
NP	0,013048**	0,012650**	-0,022867	- 0,022867	0,010561*	
N2	-0,012808	0,020156	-0,044800	- 0,019156	-0,025609*	
1'3	-0,012912**	-0,011606**	0,002800	— 0,011356	-0,012959**	
\mathbb{R}^{2}	0,85	0.93	0,41	0,77	0.86	

^{• • =} significativo ao nível de 5% de probabilidade: • = significativo ao nível de 1% de probabilidade.

QUADRO 7. Rendimentos observados e estimados em kg/ha para o fatorial 5 × 5 "grande" 3 × 3, central composto e mais extremos

		Rendimentos estimados						
Nivel trat.	Rendimento observado	5 × 5	"Grande" 3 × 3	Central composto	Central composto mais extremos			
Comuns								
N_1P_3	377	385	376	386	386			
N_3P_1	92	132	133	156	161			
N_3P_3	478	499	497	513	522			
N_2P_δ	689	606	629	643	624			
N_5P_8	536	5 46	518	544	530			
Extremos								
N_1P_1	100	84	75	85	78			
N_1P_6	418	428	444	630	435			
N_bP_1	107	116	91	302	117			
N_5P_8	678	721	712	530	685			

 P_2O_5 , mantendo-se N constante, é ilustrada na Fig. 2. Em geral, os rendimentos do feijão aumentaram segundo uma taxa decrescente, alcançaram um máximo e então declinaram na medida em que as quantidades aplicadas de N ou P_2O_5 foram aumentadas mantendo-se o outro nutriente constante.

Uma característica importante da maior parte das aplicações de fertilizantes é o fato de que uma unidade adicional do insumo geralmente acrescenta menos ao rendimento total do que a unidade anterior. Este princípio é conhecido como a lei dos retornos marginais decrescentes. A inclinação da função de produção em

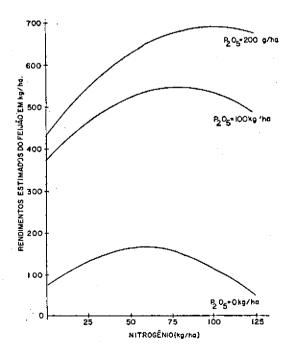


Fig. 1. Relação entre a produção física total e N com P₂O₃ mantido constante segundo os níveis especificados.

qualquer ponto especificado indica o produto marginal do recurso variável ou a variação do produto devido a uma mudança nos insumos aplicados. A função da produção segue a lei "dos retornos marginais decrescentes" e, portanto, os produtos marginais decrescem continuamente. Como é mostrada na Fig. 3, o primeiro quilo de N aumenta o rendimento em 3,5 kg por hectare quando o P₂O₈ é mantido constante a 50 kg/ha. Em contraste, a 60.ª unidade empregada estimula um aumento de apenas 0,4 kg/ha. Naturalmente, quando maiores são os níveis de fósforo, maior é a resposta para N. Os valores estimados de produtos marginais para P₂O₅, sujeitos a níveis selecionados de N são dados na Fig. 4.

Superfícies de respostas

Com a existência de duas variáveis independentes, a função de produção torna-se uma superfície. A superfície, expressa de forma tridimencional para N e P₂O₅, é

QUADRO 8. Valores estimados e observados de rendimentos de feijão (kg/ha)

Trata	mentos	- Observados	Estimades	Diferença
N	P_2O_6	- Other Factor	Darimados	Diciença
0	0	125	78	47
0	0	36	78	42
0	: 0	139	78	61
0	100	344	386	- 42
0 .	100	484	386	98
0	100	303	386	83
0	200	391	435	- 44
0	200	431	435	4 .
0	200	432	435	- 3
25	50	501	336	165
25	50	289	336	- 47
25	50	279	336	- 57
25	150	476	541	- 6 5
25	150	604	541	63
25	150	559	541	18
50	0	116	161	45
50	0	67	161	- 94
50	0	93	161	- 68
50	100	581	522	59
50	100	477	522	- 45
50	100	375	522	-147
50	200	735	624	111
50	200 .	625	624	1
50	200	708	624	84
75	50	483	381	102
75	50	585	381	204
75	50	407	381	26
75	150	652	639	13
75	150	525	639	-114
75	150	525	639	114
100	0	101	117	— 16
100	0	127	117	10
100	0	93	117	- 24
100	100	557	530	27
100	100	477	530	- 53
100	100	573	530	43
100	200	761	685	76
100	200	608	685	- 77
100	200	665	685	— 20

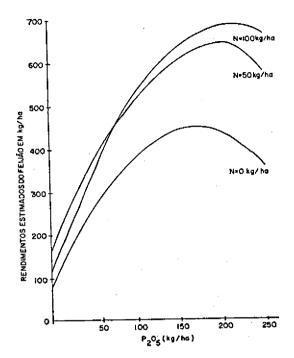


Fig. 2. Relações entre a produção física total de PiOs com nitrogênio mantido constante segundo os níveies especificados.

dada na Fig. 5. É útil visualizar as respostas coletivas dos dois insumos para prover os conceitos básicos para análises econômicas futuras. As Fig. 1 e 2 podem ser visualizadas como fatias verticais feitas através da superfície de produção a níveis selecionados dos insumos.

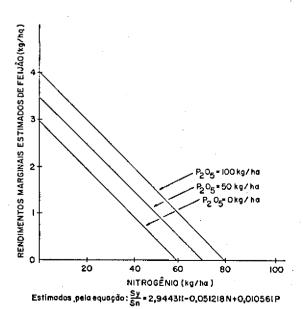
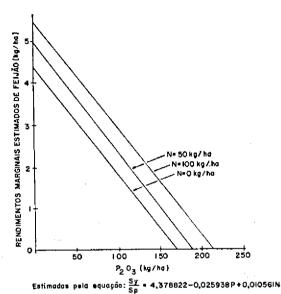



Fig. 3. Produtos físicos marginais estimados para nitrogênio sujeito aos níveis especificados de fósforo.

1G. 4. Produtos físicos marginais estimados para o fósforo sujeito aos niveis especificados de nitrogênio.

O produto cresce quando N e P₂O₅ crescem, mas em rítmo decrescente até atingir um máximo. Ele, então, decresce. O rendimento máximo, ou o ponto mais alto da superfície, ocorre com um insumo de aproximadamente 101 kg de N e 210 kg de P₂O₅. Ambos os níveis dos insumos, contudo, estão fora do alvo dos dados experimentais. A extrapolação, além do alvo coberto pelo experimento, é arriscada e, assim, alguma dúvida subsiste se êle é realmente o máximo verdadeiro.

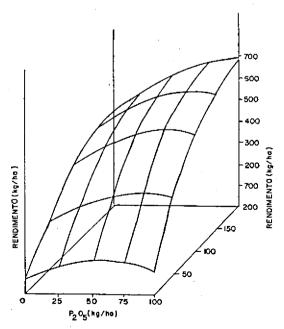


Fig. 5. Superfície de resposta, relacionando rendimentos de feijão com insumos N e P₂O₅.

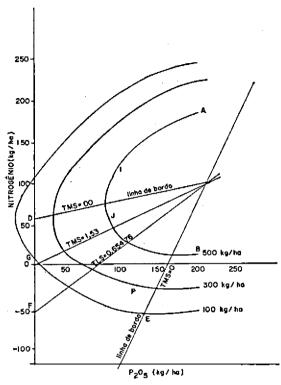


Fig. 6. Seleção de isoquantas, isoclinas e linhas-limite.

Isoquantas

Uma isoquanta é o locus de todas as combinações de insumos, i.e., N e P₂O₅ que produzem um nível especificado de utilidade. Pode ser visualizado como uma fatia horizontal através da superfície de produção (Fig. 5). A Fig. 6 fornece uma ilustração gráfica de três curvas de uma família de isoquantas para a produção de feijão. A curva AB mostra as combinações de N e P₂O₅ que

QUADRO 9. Valores numéricos das isoquantas

Rendimento	P ₂ O ₅	Nitrogênio		
10000 meno	1306	Raízes positivas	Raízes negativas	
100	0	107,27	7,69	
100	100	209,50	-53,29	
100	200	249,84	-52,39	
300	0	(—) <u>a</u>	(-)	
300	50	124,61	5,12	
300	100	175,34	-19,13	
300	150	204,20	-27,36	
300	200	221,73	-24,28	
500	0	(-)	(-)	
500	50	(-)	(-)	
500	100	118,52	87,69	
500	150	163,19	13,63	
. 500	200	183,66	13.79	

^{• (-) =} sem raízes reais.

produzem 500 kg por hectare de feijão. Por exemplo, duas combinações são 37,7 kg de N para 100 kg de P_2O_5 , e 13,8 de N para 200 kg de P_2O_6 .

A inclinação de cada isoquanta indica a proporção em que um recurso substitui outro para um determinado nível de produtividade e é chamada taxa marginal de substituição (TMS). A área de produção racional é limitada pelas linhas de bordo CD e CE. As áreas por fora dessas linhas são de produção irracional, como pode ser apreciado ao se observar os pontos I e J na curva AB. Um produtor racional nunca produziria no Ponto I porque o mesmo produto pode ser obtido pela redução das quantidades de N e P_sO_b (ponto J). Ele, assim, preferirá J em lugar de I.

Isoclinas

Uma isoclina é uma linha que liga pontos de igual taxa marginal de substituição de isoquantas sucessivamente mais altas. Em simbolismo matemático é:

$$TMS = K$$

onde K é uma constante.

Maximização de utilidade e minimização do custo

Os conceitos de isoquantas e isoclinas são usados para especificar o máximo de produto que pode ser obtido, sujeito a uma restrição de capital limitado. Isto ocorre quando a taxa marginal de substituição de N para P_2O_5 é igual à relação inversa de preços:

$$TMS = \frac{Pn}{Pp}$$

onde Pn é o prêço de quilo de N aplicado, e Pp, o de P2Os/ha⁵. A equação torna-se uma isoclina se o prêço dos insumos não se modifica quando mais adubo é empregado dentro do esquema da taxa marginal de substituição. Isto é naturalmente verdadeiro em mercados perfeitamente competitivos.

A mesma relação indica o custo mínimo de se produzir um nível determinado de produto. Assim, se Y é o máximo que pode ser obtido de uma quantia X, X é o custo mínimo pelo qual o produto pode ser obtido.

As isoclinas

TMS = 1,53 =
$$\frac{Pn}{Pp}$$
 = $\frac{0,84}{0,55}$
TMS = 0,65476 = $\frac{Pn}{Pp}$ = $\frac{0,55}{0,84}$

foram marcadas na Fig. 6 com OC e FC respectivamente. Em um mercado perfeitamente competitivo, onde os fatôres de preços mantêm-se em proporções constantes, é melhor expandir a produção ao longo da isoclina apropriada. O produtor racional selecionará somente as combinações de insumos situadas nessa faixa de expansão.

Quando mais fertilizante é utilizado, os custos totais aplicados crescem mais do que o custo do fertilizante. Contudo, o aumento por kg do nutriente é tão pequeno que, para nossos fins, será considerado constante.

Maximização dos lucros

Geralmente o empresário com vivência tem habilidade para variar os níveis de custos e produtos tendo por meta a maximização do lucro, não se envolvendo em problemas de produção máxima restrita ou custo mínimo restrito. Assim, o problema resume-se em saber até que ponto poderá ir na faixa de expansão.

Para obter as combinações ótimas de insumos é necessário considerar o preço do produto Py em adição aos outros fatôres de preços. A combinação ótima de nutrientes ocorre quando o valor do produto marginal (PM) de cada nutriente, que é o produto marginal multiplicado pelo prêço de Y°, é igual ao custo do nutriente⁷. Em nosso caso estamos considerando dois nutrientes, portanto, teremos duas equações:

 $VP_nM = P_n$ $VP_pM = P_p$

e duas incógnitas N e P_2O_5 . Solucionando as duas equações simultâneas, é obtida a combinação ótima de nutrientes da planta. As combinações ótimas de preços de insumos e produtos são dadas no Quadro 10.

O retôrno por hectare, depois de deduzir os custos de N e P_2O_3 aplicados, varia com o prêço de feijão por quilo considerando outros fatôres iguais. Naturalmente, um retôrno positivo não indica necessàriamente que a produção de feijão é lucrativa. O custo do fertilizante é um dos custos feitos em produzir uma cultura. Todos os outros custos precisam ser deduzidos e o resultado residual precisa ser comparado com os retornos de procedimentos alternativos, antes de ser decidido se a produção de feijão é lucrativa. Quanto mais altos são os preços de feijão, maiores os retornos residuais.

Por exemplo, no Quadro 10, pode ser verificado que o prêço de feijões a Cr\$ 0,34 por quilo e N e P²Os a Cr\$ 0,84 e Cr\$ 0,56, respectivamente, o retôrno acima do custo dos insumos é Cr\$ 84,65. Se o prêço do feijão é de Cr\$ 0,55 por quilo ou acrescido de 62%, o retôrno aumenta de 146%, passando a Cr\$ 208,41, assumindo os mesmos preços de insumo.

Em geral, as quantidades ótimas de insumos e retornos residuais caem quando os fatôres de preços crescem. Entretanto, a percentagem de decréscimo nos retornos residuais por hectare e em rendimento por hectare é maior quando o prêço de P_zO_5 aumenta (com o prêço de N mantido constante) do que no caso oposto. A implicação política é que, se deve ser dado tratamento especial a um nutriente de planta, uma redução no prêço de P_zO_5 preenche êste requisito.

Na ocasião em que êste trabalho estava sendo escrito, as relações de preços existentes em algumas regiões do Brasil correspondiam às transcritas na linha 9 do Quadro 10

O uso ótimo de insumos, nesse caso, era de 0 kg de N e 40,4 kg de P₂O₅ por hectare. A produtividade e retôrno residual por ha são baixos com 234,0 kg e Cr\$ 35,12 respectivamente. A linha 1, por outro lado, fornece estimativas para as relações de preços existentes nos Estados Unidos da América. Produtividade e retornos residuais são aumentados para 626,8 kg e Cr\$ 208,41 pela aplicação de fertilizantes em nível ótimo.

Se o Brasil elevar o prêço do feijão, por meio de um prêço mínimo mais elevado ou outro método adequado, de modo a nivelar-se com o existente nos E.U.A., mesmo com os preços de insumos mantidos constantes a produção crescerá aos níveis ótimos de 502,00 kg/ha ou 115% e o retôrno residual para Cr\$ 117,13 ou 234% (linha 10). De forma similar, se os preços dos insumos puderem ser reduzidos aos preços correspondentes nos E.U.A. mantendo-se o prêço do produto, a produtividade poderia ser elevada de 126%, passando a 527,9 kg/ha, e os retornos residuais de 114%, subindo para Cr\$ 84,65 (linha 3). A antecipação apropriada do prêço mínimo é importante para o fazendeiro obter os retornos máximos. Por exemplo, suponhamos que o fazendeiro, sabendo que o prêço de N aplicado será Cr\$ 1,30/kg e o prêço de PaO₅, Cr\$ 1,10/kg, pode antecipar que o prêço de feijão será de Cr\$ 0,55/kg na colheita. Éle, então, usará as combinações de insu-

Quadro 10. Quantidades ótimas de N e de P_oO_κ para um dado prêço de feijão do mercado e de N e P_sO_κ

Linha	Preço da unidade			Insumo	s ótimos	Rendimento	Retôrno/ /hectare depois de
n.º	Feijāo	N	P ₂ O ₅	N	P ₂ O ₅	Tronutinos.0	dedusir o custo de N e F ₂ O ₅
	(kg)	(kg)	(kg)	(kg)	. (kg)	(kg)	Cr\$
(1)	0,55	0,84	0,56	59,5	154,2	626,8	208,41
(2)	0,55	0,56	0,84	65,0	137,1	613,2	185,14
(3)	0,34	0,84	0,56	33,7	118,8	527,9	84,65
(4)	0,34	0,56	0,84	44,1	91,4	447,6	50,71
(5)	0,55	0,84	0,84	55,1	130,4	589,1	168,19
(6)	0,55	0,56	0,56	70,4	158,6	644.8	226,40
(7)	0,34	0,84	0,84	26,6	84,2	439,9	56,49
(8)	0,34	0,56	0,56	51,2	125,5	574,9	96,51
(9)	0,34	1,30	1,10	0	40,4	234,0	35,12
(10)	0,55	1,30	1,10	33,1	105,4	502,0	117,13

e O custo de colheita dos produtos varia com a quantidade dos produtos colhidos, mas geralmente não segue uma proporção direta. Para ser perfeitamente correto, o acréscimo dos custos deve ser deduzido do prêço de produtos por unidade. Contudo, êstes custos marginais de colheita são relativamente pequenos e difíceis de estimar e por essa razão não é feita dedução dos custos marginais de colheita neste trabalho.

O valor do produto marginal deve incluir o valor residual dos adubos aplicados no solo. Entretanto, presentemente, não há uma avaliação empírica de fertilidade residual e são assim ignorados. Estão sendo conduzidos presentemente ensaios para estimar êsses valores.

mos mais lucrativos ou seja 33,1 kg de N e 105,4 de P²O₃ por hectare. Dêsses insumos êle espera receber um rendimento de 502,0 kg/ha e um retôrno residual, depois de deduzidos os custos de N e de P₂O₅, de Cr\$ 117,13. Suponhamos agora que o prêço de feijão na colheita é Cr\$ 0,34 em vez de Cr\$ 0,55. O valor total da lavoura será então Cr\$ 170,68. Depois de deduzidos os custos de N e P₂O₅, sobra o valor residual de 11,71. Se o fazendeiro pudesse predizer corretamente o prêço de Cr\$ 0,34 por kg, a combinação mais lucrativa de insumos seria o N e 40,4 de P₂O₅. Com êsses insumos, o retôrno residual teria sido de Cr\$ 35,12 por hectare. Dessa forma, o fazendeiro receberia Cr\$ 23,41 menos por hectare, em têrmos do que êle poderia ter recebido se tivesse empregado quantidades mais lucrativas de fertilizantes.

Deve ser recordado que a superfície de respostas é uma estimativa e ainda mais que a análise aqui discutida se refere a um único local de ensaio e a um ano de produção. Portanto, o uso dos dados é válido unicamente para locais similares submetidos a condições de experimentação e de clima semelhantes. Não obstante, as análises indicam de forma dramática os efeitos de decisões alternativas e sugerem a necessidade de considerável esfórço de pesquisa dentro desta linha.

Referências

National Academy of Sciences, 1961. Status and methods of research in economic and agronomic aspects of fertilizer response and use. Publ. 918, Nat. Acad. Sci., Nat. Res. Council, Washington, D.C.

Bauwin, G.R., Miller, S.F., Ruschel, A.P., Eira, P.A. da, Almeida D.L. de 1967. Interpretação agronômica e econômica da resposta de superfície. I. Efeito do nitrogênio e fósforo na produção vegetativa do milho. Anais XI Congr. bras. Ciênc. Solo, Brasília, p. 50-51. (Resumo)

Vettori, L. 1966. Métodos de análise de solos. Divisão de Pedologia e Fertilidade do Solo, Min. Agric., Rio de Janeiro.

ABSTRACT.- Miller, S.F., Bauwin, G.R. & Guazzelli, R.J. 1972. Economic and agronomic evaluation of a common bean experiment Uberaba, Minas Gerais. Pesq. agropec. bras., Sér. Agron., 7:19-26. (Estação Experimental de Uberaba, MG, Brazil)

An economic and agronomic evaluation of the possibilities to produce common beans in poor "cerrado" in central Brazil was made by the use of five levels of N and P_2O_5 . The experimental portion of the paper deals with a comparison of several types of "treatment designs", some of which are specific for estimating response surfaces. The results from one of the latter designs were used to demonstrate the general principles of agronomic economics analysis. The results have shown that central composite plus extremes design provided information equivalent to the standard 5×5 factorial with the use of fewer resources and, therefore, was used in the economic phase of the paper. The other designs studied were small and large 3×3 factorials and central composite. To evaluate the use of N and P_2O_5 in the production of beans, estimates were made of the economically relevant portions of the plant nutrient input-output surface.

A graphic illustration of three curves of a family of isoquants for the production of beans was made. Points of equal marginal rate or substitution of successively higher isoquants were marked by the line called isocline. Output maximization and cost minimization were determined as well as profit maximization. The return per hectare after deducting costs of applied N and P_eO_b vary with the price of beans per kg. In general, optimal quantities of inputs and residual returns fall as factor prices increase. However, a greater percentage of decrease occurs in residual return per hectare and in yield per hectare, as the price of P_eO_b increases (with the price of N held constant). It was shown that the proper anticipation of the price of beans is important to the farmer to obtain maximum returns. He will use the most profitable combination of inputs.