CORRELAÇÃO ENTRE ALGUNS MÉTODOS DE DETERMINAÇÃO DE CARBONO 1

CELMIRA T. A. FRATTINI² e RAUL EDGARD KALCKMANN³

Sumário

Estudou-se a comparação entre três métodos de determinação de carbono em alguns solos do Rio Grande do Sul: a) o método colorimétrico que é uma modificação do processo de Schollenberg; b) o método de Schollenberg e c) o método de combustão por via sêca.

INTRODUÇÃO

A matéria orgânica nos solos é uma mistura heterogênea de substâncias de origem vegetal, animal e microbiana. Sua influência estende-se sôbre as propriedades físicas e químicas do solo.

A determinação da matéria orgânica se baseia na sua oxidação por meio de agentes adequados.

Entre os métodos de determinação da matéria orgânica do solo, distinguem-se duas categorias: os métodos por combustão sêca e os métodos por combustão úmida. Em todos êles a determinação da matéria orgânica consiste na dosagem do carbono.

É considerado como mais exato para a determinação do carbono, o método por combustão sêca em que o gás carbônico desprendido é medido volumètricamente. Uma das principais causas de êrro dêsse método é a presença de carbonatos no solo, que ao se decompor desprende gás carbônico.

Em relação à matéria orgânica do solo, conforme Jackson (1958), o método mais adequado seria o de Walkley Black, o qual consiste essencialmente no mesmo processo que o de Schollenberg, diferindo dêste por não envolver aplicação de calor externo. Para alguns, isto é considerado uma vantagem, desde que ataca sòmente a matéria orgânica ativa. Nesse caso o fator para o cálculo da matéria orgânica seria: $\frac{1.72}{0.77} = 2.23$

porque segundo Walkley sòmente 77% da matéria orgânica seria oxidada.

Nos métodos por combustão úmida a matéria orgânica é atacada por oxidantes enérgicos, dos quais o dicromato de potássio oferece maior exatidão.

No presente trabalho estudou-se a comparação entre os métodos da determinação de carbono por via sêca e por via úmida, método volumétrico; e também a comparação entre a combustão sêca e a combustão por via úmida, usando o método colorimétrico, visando a adoção dêsse último para as análises de rotina do laboratório da Seção de Solos do Instituto de Pesquisas e Experimentação Agropecuárias do Sul (IPEAS).

MATERIAL E MÉTODOS

O trabalho foi desenvolvido usando-se 20 amostras de solos de diferentes lugares do Rio Grande do Sul, a saber: perfil n.º 1: Rosátio; perfil n.º 2: Swift; perfil n.º 3: São Gabriel; perfil n.º 4: Santo Amor; perfil n.º 5: Passo do Valdez; perfil n.º 6: Arroio Grande; perfil n.º 7: Povo Nôvo; perfil n.º 6: Arroio Grande; perfil n.º 9: Pedras Altas (meia encosta); perfil n.º 10: IPEAS Central; perfil n.º 22: Passo Fundo; perfil n.º 2: Oásis; perfil n.º 25: Ciríaco; perfil n.º 35: Santo Ângelo; perfil n.º 50: Júlio de Castilhos; perfil n.º 47: Bom Jesus; perfil n.º 6: Cruz Alta; perfil n.º 14: Vacaria; perfil n.º 7: Estação; perfil n.º 8: Durox.

A determinação do carbono no solo foi feita por três processos diferentes a saber:

Combustão sêca

Feita num trem de combustão (aparelho Dietert) oxidando-se a matéria orgânica a 1.200°C.

Trabalho apresentado ao X Congresso Brasileiro de Ciências do Solo, Piracicaba, 1965. Foi recebido para publicação em 25 de agôsto de 1966 e constitui o Boletim Técnico n.º 53 do Instituto de Pesquisas e Experimentação Agropecuárias do Sul (IPEAS).

³ Eng.º Agrônomo, técnico da Seção de Solos do IPEAS, Pelotas, Rio Grande do Sul.

³ Eng.º Agrônomo, técnico da Seção de Solos do IPEAS e Prof. de Agricultura da Escola de Agronomia "Eliseu Maciel", Pelotas, Rio Grande do Sul.

Combustão úmida

Nesse processo usamos o método de Schollenberg modificado no qual atacamos um determinado pêso de terra com dicromato de potássio, na presença de ácido sulfúrico concentrado, com aplicação de calor externo. Dosamos depois o excesso de dicromato por processo iodométrico através de titulação com tiossulfato de sódio.

Método colorimétrico

As técnicas colorimétricas usadas para a determinação da matéria orgânica do solo, baseiam-se no mesmo processo de oxidação volumétrica, sendo que em vez de titular o excesso do dicromato, dosa-se o mesmo por meio de um fotocolorímetro.

Usamos neste trabalho o método preconizado pela Universidade de Wisconsin e que consiste no seguinte: alíquota do líquido sobrenadante é passada para um tubo colorimétrico e deixada em repouso por tôda a noite. A intensidade de côr azul é lida num colorimetro Klett-Summerson, usando filtro 66 mg.

No Quadro 1 estão relacionados todos os dados de carbono obtidos pelos três métodos, sendo que a determinação de carbono por via sêca foi feita com seis repetições e as outras duas determinações, com duas repetições cada uma.

CONCLUSÕES

Fazendo-se a análise da comparação entre os métodos de combustão úmida volumétrica e o de combustão sêca, obtivemos a correlação: r = 0,958.

Na análise de comparação entre os métodos via úmida colorimétrico de Wisconsin e o via sêca, a correlação foi: r = 0.936.

QUADRO 1. Percentagem de carbono obtido da matéria orgânica pelos três métodos citados

Rosário	Combustão			Sêca (fôrno)			Média	Combustão Úmida- -volumétrico		Combustão Úmida- -colorimétrico			Média
	2.12	2.66	2.08	2.14	2.10	2.10	2.20	2.40	1.93	2.16	325	325	325
Swift	1.20	1.16	0.98	1.04	1.20	1.30	1.15	0.90	0.89	0.90	175	185	180
São Gabriel	1.28	1.42	1.38	1.28	1.38	1.42	1.36	1.50	1.24	1.37	224	236	230
Santo Amor	0.78	1.76	1.28	1.80	1.38	1.32	1.39	1.27	1.26	1.27	210	230	220
Passo do Valdez	2.10	2.00	2.04	1.72	1.92	1.84	1.94	1.97	1.94	1.96	226	270	248
Arroio Grande	1.44	1.40	1.30	1.24	1.14	1.08	1.26	1.57	1.14	1.36	165	170	168
Povo Nôvo	0.58	0.78	0.40	1.08	0.40	1.30	0.75	0.68	0.31	0.50	67	80	74
Pedras Altas	2.78	2.86	2.34	2.96	2.60	2.48	2.67	2.01	2.03	2.04	216	325	271
Pedras Altas (meja encosta)	3.90	0.58	3.90	2.70	3.28	2.22	3.10	2.98	2.58	2.78	330	400	365
IPEAS (Central)	0.84	0.90	0.66	1.10	0.62	0.96	0.85	1.30	0.54	0.92	103	120	112
Passo Fundo	1.56	1.80	1.36	1.30	1.68	1.64	1.57	1.61	1.29	1.45	220	25 8	239
Oásis	2.06	2.12	2.10	1.80	2,40	2.44	2.15	2.17	1.81	1.99	290	305	298
Ciríaco	0.90	1.30	0.92	1.24	1.10	1.32	1.13	0.66	0.68	0.67	112	154	133
Santo Ângelo	2.20	2.24	1.82	2.36	2.20	2.60	2.24	2.23	1.79	2.01	236	310	273
Julio de Castilhos	2.32	2.54	2.36	3.20	2.58	2.70	2.62	2.18	1.96	2.07	270	315	293
Bom Jesus	4.10	4.02	3.54	3.00	5.00	3.70	3.89	3.42	3.05	3.24	360	400	380
Cruz Alta	1.18	1.20	1.10	1.46	1.32	1.54	1.30	1.39	1.01	1.22	185	165	175
Vacaria	4.40	3.78	4.00	3.02	3.64	4.16	3.83	3.01	2.56	2.78	375	375	375
Estação	2.82	2.86	3.00	2.92	3.18	3.00	2.96	2.39	2.26	2.33	330		330
Durox	4.78	4.22	3.30	2.84	3.98	4.42	3.92	2.52	2.96	2.74	380		380

pesamos 1,5g de solo e colocamos num Erlenmeyer de 50 ml. Adicionamos então 10 ml de solução digestora de dicromato de sódio 3N e ácido sulfúrico 10N.

A suspensão foi colocada numa estufa a 90°C por hora e meia, após completar a digestão colocamos 25 ml de água destilada, misturamos completamente e deixamos descansar por três horas. Então uma Como os resultados obtidos por êsse método são comparáveis aos resultados obtidos pelos métodos clássicos de combustão sêca e combustão úmida volumétrico, conclui-se que êste método em análise de rotina, poderá substituir vantajosamente os outros em virtude de: a) ser prático; b) rápido; c) econômico; d) dispensando a titulação, não necessitar de pessoal experimentado.

O objetivo principal do trabalho era a correlação dos três métodos, não se tendo verificado, por carência de tempo, as condições que influenciam o uso do método.

Grahan (1948) utilizando processo similar verificou que o método é preciso para o solo com menos de 2,5% de matéria orgânica; menos preciso para aquêles solos na faixa de 2,5 a 4,5% e menos preciso ainda para aquêles acima de 4,5%.

Verificou ainda a variabilidade de curva dependendo de condições de digestão e procedimento, sendo as mais comuns a variação de concentração do ácido sulfúrico e temperatura ambiente e ainda as variações individuais.

REFERÊNCIAS

Grahan, E.R. 1948. Determination of soil matter by means of a photovlatric colorimeter. Soil Sci. 65:181-183.

Jackson, M.L. 1958. Soil chemical analysis. Prentice Hall, Engel word, N. J.

Soil Dept., Univ. Wisconsin, Madison, Wis. (Dados não publicados)

CORRELATION AMONG SOME METHODS OF CARBON DETERMINATION

Abstract

Three methods of carbon determination in some soils of Rio Grande do Sul were compared, mainly:

- a) colorimetric method which is a modification of Schollenberg process;
- b) the Schollenberg method;
- c) the dry combustion method.