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Abstract – The objective of this review was to summarize the current information about semiochemicals with 
potential to be applied in insect pest management in agroecosystems. One of the great challenges to Neotropical 
agriculture is to reduce the indiscriminate use of pesticides, which can be minimized by using semiochemicals, 
a tool that can be applied in the field to manage pests and their natural enemies. In addition, small lipophilic 
molecules from insects and from the secondary metabolism of plants play a fundamental role in the chemical 
communication of different species that are present in important crops.

Index terms: chemical communication, herbivore‑induced plant volatiles (HIPVs), oviposition‑induced plant 
volatiles (OIPVs), pest control, pheromone, synomone.

Semioquímicos de plantas e insetos no comportamento de busca  
de parasitoides de ovos Platygastridae

Resumo – O objetivo deste artigo de revisão foi reunir informações atuais sobre semioquímicos com potencial 
para serem aplicados no manejo de insetos‑praga em agroecossistemas. Um dos grandes desafios para a 
agricultura Neotropical é reduzir o uso indiscriminado de pesticidas, que pode ser minimizado pelo uso de 
semioquímicos, uma ferramenta que pode ser aplicada no campo para o manejo de pragas e de seus inimigos 
naturais. Além disso, pequenas moléculas lipofílicas dos insetos e do metabolismo secundário de plantas 
desempenham papel fundamental na comunicação química das diferentes espécies que estão presentes em 
importantes culturas.

Termos para indexação: comunicação química, voláteis de planta induzidos pela herbivoria (HIPVs), voláteis 
de planta induzidos pela oviposição (OIPVs), controle de pragas, feromônios, sinomônios.

Introduction

Increasing plant diversity in agroecosystems reduces 
herbivorous populations and increases the abundance 
of natural enemies and, consequently, their impact on 
pests (Schoonhoven et al., 2005). This shows that plant 
biodiversity could be better explored. An alternative 
is intercropping or multiple cropping systems using 
sentinel plants that release volatiles attractive to 
natural enemies and repellent to herbivores, pushing 
them away from the target crop, as in a push‑pull 
system (Cook et al., 2007). Another, not yet used but 
not novel approach, is the adoption of herbivore‑ and 
oviposition‑induced plant volatiles (HIPVs and OIPVs, 
respectively) in crop systems. HIPVs and OIPVs are 
used by plants in their defense against herbivores, to 
attract and retain their natural enemies (Vet & Dicke, 

1992). Besides plant volatiles, semiochemicals from 
other sources, such as insects, are also used by natural 
enemies when foraging for hosts and, therefore, might 
also be used to manipulate their behavior (Vet & Dicke, 
1992).

Semiochemicals from plants and insects may be a 
valuable tool because they can be used for behavioral 
manipulation of parasitoids, improving their impact on 
pest populations in agroecosystems. Foraging behavior 
of parasitoids includes several sequential steps: habitat 
location, host location and suitability, and oviposition 
(Godfray, 1994). During these steps, parasitoids can 
use physical, biochemical, and, mainly, semiochemical 
cues (Vinson, 1985; Godfray, 1994). The knowledge 
of the different steps and of the identification of the 
cues used by the parasitoids in each maneuver could be 
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relevant to select and obtain semiochemicals that can 
be used for behavior manipulation.

Egg parasitoids from the Platygastridae family 
have been shown to be very efficient to control 
herbivorous pests, especially from the Pentatomidae 
family (Corrêa‑Ferreira, 2000). In Brazil, one of the 
main soybean (Glycine max L.) pests, the brown 
stink bug Euschistus heros (Fabricius) (Hemiptera: 
Pentatomidae) might be controlled by these 
parasitoids, which include Telenomus podisi Ashmead 
and Trissolcus basalis (Wollaston) (Hymenoptera: 
Platygastridae) (Michereff et al., 2015). The occurrence 
of these parasitoids together with Trissolcus teretis 
(Johnson), Trissolcus urichi (Crawford), and Trissolcus 
brochymenae (Ashmead) has been widely reported 
in soybean crops in the country, and T. podisi is the 
most abundant natural enemy of E. heros in soybean 
crops, with >80% parasitism of host eggs (Pacheco & 
Corrêa‑Ferreira, 2000; Michereff et al., 2015).

Since 1950, the negative effect of insecticide 
application to natural enemies has been observed, and 
studies have shown that the reestablishment of the 
parasitoid population takes a long time (Pickett, 1959). 
Nowadays, due to the intense use of pesticides, natural 
enemies have a restrict action in the field (Cônsoli 
et al., 1998).

This review will highlight: plant defense mechanisms 
and their interaction with natural enemies; important 
studies conducted in the laboratory and the field, 
using arable crops, as well as HIPVs and OIPVs; host 
semiochemicals used to attract natural enemies and 
for eavesdropping by parasitoids; and the main gaps 
to efficiently use HIPVs on field conditions to attract 
natural enemies.

Plant defense mechanisms against herbivores 
and oviposition

Plants are equipped with several mechanisms to 
defend themselves against herbivores, microbial 
pathogens, or abiotic stress, such as hydro or 
mechanical damage. Plant resistance against insects 
can be physical, morphological, or chemical. Chemical 
defenses in plants are derived from the secondary 
metabolism and can be constitutive or induced 
(Chen, 2008; Heil, 2008). The constitutive defense 
is expressed continuously, independently of biotic or 
abiotic stress, and it is related to the production of 

different types of compounds, such as proteins, amino 
acids, sugar, and secondary metabolites (Schoonhoven 
et al., 2005; Chen, 2008; Heil, 2008). Induced defense 
is a plant response to damage or stress, which can result 
in an increase in the production of volatile organic 
compounds, for example (War et al., 2012; Heil, 2014).

Herbivore‑induced plant volatiles are released in 
greater amounts than constitutive volatiles. Therefore, 
HIPVs are more easily detectable at long distances by 
parasitoids, when compared, for example, to volatiles 
emitted by herbivores themselves or host eggs, carrying 
on important information to natural enemies about the 
location of their hosts (Vet & Dicke, 1992; Dicke, 1999) 
(Figure 1). Both types of defense can be classified 
as direct, when directly affecting herbivores; or as 
indirect, when attracting and retaining natural enemies. 
Direct defense can involve: the reduction of vegetal 
tissue nutritional quality, in which the plants reduce the 
supply of essential metabolites to the herbivore; and 
the production of compounds that minimize herbivore 
performance or the production of deleterious (toxic) 
substances to the herbivore (Chen, 2008; War et al., 
2012). In indirect defense, plants can ‘cry for help’, 
attracting the natural enemies of herbivores, through 
the release of HIPVs or OIPVs that are used by natural 
enemies as cues to find their host (Kessler & Baldwin, 
2002; Heil, 2008; Hilker & Fatouros, 2015).

Constitutive indirect plant defense chiefly involves 
the interaction among extrafloral nectaries, food 
bodies, and domatia with natural enemies. These 
secretions and structures are used by natural enemies, 
mainly ants, as food and housing (Schoonhoven et al., 
2005; Heil, 2008), but also by other insects, such as 
ladybird beetles (Pemberton & Vandenberg, 1993), and 
predatory (Cuautle & Rico‑Gray, 2003) and parasitoid 
wasps (Heil, 2008). Chemical and morphological plant 
attributes can directly influence the survival, fecundity, 
and foraging success of natural enemies. These traits 
can also have indirect effects on the quality of the 
herbivores that feed on these plants, which, in turn, 
alters the physiology, behavior, or development of 
their natural enemies (Cortesero et al., 2000; Chen 
et al., 2015).

The indirectly‑induced plant defense in insect‑plant 
relationships can be elicited by herbivory and/or 
oviposition injury, which induces the production of 
volatile organic compounds and also of extrafloral 
nectaries (Price, 1997; Heil, 2004, 2008; Chen, 2008; 
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Moraes et al., 2008). The HIPVs and OIPVs vary 
depending on plant species and cultivars, and influence 
in different ways the foraging behavior of parasitoids, 
such as T. podisi that is attracted differently to HIPVs 
released by three different plant species (Dias, 2015) and 
soybean cultivars (Michereff et al., 2011). The HIPVs 
emitted by the resistant soybean cultivars Dowling and 
IAC 100, in laboratory bioassays, attracted T. podisi, 
whereas the HIPVs emitted by the susceptible cultivar 
Silvânia did not (Michereff et al., 2011); a similar result 
was observed when these cultivars were evaluated in 
field conditions (Michereff et al., 2015). Therefore, 
the effect on the third trophic level might be taken into 
consideration in the development of resistant plant 
cultivars. These issues have been proposed since the 
first studies with HIPVs and natural enemies in the late 
1980’s, but until now there are only few examples of 
the role played by genetic engineering crops on the 
third trophic level, and none of their commercial use 
(Vet & Dicke, 1992; Schnee et al., 2006).

Plants change the blend of volatile organic 
compounds in response to damage, either qualitatively 
or quantitatively (Dicke, 1999), which depends mostly 
on plant traits that vary among species or genotypes, 

and also on the different herbivore species causing 
the damage (Lin et al., 2008; Rasmann & Turlings, 
2008). Furthermore, the chemical profile emitted 
by herbivore‑ or oviposition‑damaged plants can 
be markedly different from those of undamaged and 
mechanically‑damaged ones (Moraes et al., 2005, 
2008; Michereff et al., 2011). This change can be 
responsible for the differential attraction of parasitoids 
and predators (Hoballah & Turlings, 2001). Several 
works have proposed the use of the plant strategy ‘cry 
for help’ in crop systems to manage pests and natural 
enemies. In addition, these studies suggest that these 
volatile compounds could increase the effect of natural 
enemies on herbivores, promoting a cascading effect 
on the lower trophic levels, leading to a reduction in 
feeding damage and enhancing plant fitness. However, 
herbivore‑induced volatiles do not always play a role 
in the ‘cry for help’ strategy and can present a negative 
effect on plant fitness. The predator Thanasimus dubius 
(Fabricius) (Coleoptera: Cleridae) feeds on bark beetle 
adults and eggs; however, its attraction occurs when 
there is no way to save the plant anymore, meaning 
that without tree death this predator does not have its 
source of food (Erbilgin & Raffa et al., 2001).

Figure 1. Main cues used by Telenomus podisi when searching for hosts, i.e., eggs of Pentatomidae. Long‑range cues involve 
volatiles from plants, constitutive and herbivory‑induced volatiles; and short‑range cues involve volatile compounds, such as 
sex pheromones and volatiles from eggs, as well as less volatile or non‑volatile compounds, including kairomone footprints, 
compounds from the host, vibratory signals, and visual cues.
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HIPVs/OIPVs and their potential to manage 
parasitoids in arable crops

The HIPV and OIPV compounds from different 
plants are well studied and identified. These compounds, 
in general, are derived from the terpenoid, shikimic, 
and lipoxygenase pathways (Dudareva & Pichersky, 
2008). However, there are still several questions 
about the importance of these compounds and how 
they affect the attraction of natural enemies. Most of 
the pioneering works on HIPVs and their effects on 
parasitoid behavior were conducted on arable crops, 
such as maize (Zea mays L.), by Turlings et al. (1991) 
and Takabayashi et al. (1995); cotton (Gossypium 
hirsutum L.), by Turlings et al. (1995) and Cortesero 
et al. (1997); rice (Oryza sativa L.), by Lou et al. 
(2005) and Melo Machado et al. (2014); soybean, by 
Moraes et al. (2005, 2008) and Michereff et al. (2011, 
2013); and bean (Phaseolus vulgaris L.), by Colazza 
et al. (2004).

Soybean plants and pigeon pea [Cajanus cajan 
(L.) Millsp. (Fabales: Fabaceae)] herbivored by E. 
heros release a similar volatile profile that attracts the 
egg parasitoid T. podisi. However, when soybean is 
feeding‑damaged by Anticarsia gemmatalis Hübner 
(Lepidoptera: Noctuidae) larvae, the chemical profile 
becomes different and does not attract T. podisi 
(Moraes et al., 2005). Colazza et al. (2004) reported 
that T. basalis is attracted by synomones released 
by two different legume species, when the plants are 
damaged by herbivores and oviposition. Different 
soybean cultivars damaged by E. heros herbivory 
release a similar chemical profile between them 
and, in comparison to undamaged soybean plants, 
produce higher amounts of several compounds, such 
as (E,E)‑α‑farnesene, methyl salicylate, (Z)‑3‑hexenyl 
acetate, and (E)‑2‑octen‑1‑ol (Moraes et al., 2008; 
Michereff et al., 2011). Olfactometer bioassays 
conducted with T. podisi and these compounds, in 
different mixtures and concentrations, showed that 
this parasitoid responds only to (E,E)‑α‑farnesene, as a 
single compound. However, when (E,E)‑α‑farnesene is 
compared to HIPVs, T. podisi responds preferentially 
to HIPVs, showing that there are other important 
compounds in host recognition for this parasitoid 
(Michereff et al., 2013). Parasitoids can also perceive 
HIPVs and OIPVs after landing on the host plants 
(Conti et al., 2010). For example, cabbage (Brassica 

oleracea L.) plants respond to oviposition of Murgantia 
histrionica (Hahn) (Hemiptera: Pentatomidae), 
releasing volatiles that are explored by T. brochymenae  
after they have landed on the plant (Conti et al., 2010).

The identification of HIPV or OIPV key compounds 
to which parasitoids are attracted to is a very complex 
task. Egg parasitoids are able to recognize and 
respond to HIPVs from different plant species that 
were herbivore‑damaged by a common herbivore, as 
described by Dias (2015), who found that T. podisi 
recognized the volatiles emitted by maize, pigeon 
pea, and sunflower [Helianthus annuus L. (Asterales: 
Asteraceae)] damaged by its preferred host, E. heros; 
these three plants present a different chemical profile 
of volatiles. The described studies represent well 
the complexity of the interactions between plants, 
herbivores, and natural enemies.

This complexity is spread to other parasitoid families 
as well. Another example of it occurs in maize, in which 
studies have shown that different maize cultivars release 
typical blends, containing: green leaf volatiles, such 
as (Z)‑3‑hexenal, (E)‑2‑hexenal, (Z)‑hexen‑1‑ol, and 
(Z)‑3‑hexen‑1‑yl‑acetate; terpenoid compounds like 
linalool, (E)‑4,8‑dimethyl‑1,3,7‑nonatriene (DMNT), 
(3E,7E)‑4,8,12‑trimethyl‑1,3,7,11‑tridecatetraene 
(TMTT), α‑bergamotene, (E,E)‑α‑farnesene, 
(E)‑β‑farnesene, and nerolidol; and compounds from 
the shikimic acid pathway, including benzyl, phenethyl 
acetate, and indole (Gouinguené et al., 2003). 
When maize plants are injured by Spodoptera spp. 
(Lepidoptera: Noctuidae) feeding, the chemical profile 
changes quantitatively and attracts natural enemies, 
such as Cotesia marginiventris Cresson and Microplitis 
rufiventris Kokujev (Hymenoptera: Braconidae) 
(Turlings et al., 1991, 2004). When maize plants 
suffer herbivore damage by Spodoptera spp., the main 
compound released is indole, but bioassays showed 
that this compound apparently does not influence the 
response of C. marginiventris (D’Alessandro et al., 
2006). However, when the minor compounds of the 
blend released by maize plants are removed, this 
parasitoid does not respond anymore (D’Alessandro 
et al., 2009). Recently, Erb et al. (2015) reported that 
the herbivore‑induced indole is used as a signal of 
danger by other plants, inducing a priming effect on 
maize plants.

In this scenario, HIPVs can serve as indirect cues 
for egg parasitoids, providing information about 
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the presence of eggs, for example, that are more 
inconspicuous, leading parasitoids to use these volatiles 
to locate plants with potential hosts (Blassioli‑Moraes 
et al., 2011; Michereff et al., 2011; Peñaflor et al., 
2011). The egg parasitoid Telenomus remus Nixon 
(Hymenoptera: Platygastridae) is attracted to HIPVs 
from maize plants damaged by Spodoptera frugiperda 
(J.E. Smith) (Lepidoptera: Noctuidae), after associating 
these volatiles with oviposition (Peñaflor et al., 2011). 
Soybean plants herbivore‑damaged by E. heros also 
attract T. podisi, but soybean plant volatiles induced 
by oviposisiton do not (Moraes et al., 2008; Michereff 
et al., 2011). However, the combination HIPVs 
+ OIPVs results in different profiles of chemical 
volatiles, attracting the parasitoid (Moraes et al., 2008; 
Michereff et al., 2011). Similar behavior was observed 
for T. basalis, in which bean plant OIPVs induced by 
Nezara viridula L. (Hemiptera: Pentatomidae) were 
not attractive to this parasitoid, but the combination 
HIPVs + OIPVs was (Colaza et al., 2004), suggesting 
that herbivore damage and oviposition appear to act 
synergistically.

Studies with other parasitoid families have shown 
that the laid egg can also induce indirect plant 
defense, releasing chemical volatiles that attract egg 
parasitoids in the laboratory and in the field (Hilker & 
Meiners, 2006, 2010). The possibility of using these 
OIPVs was shown in a non‑arable crop, the European 
field elm Ulmus minor Mill. (Rosales: Ulmaceae). 
When U. minor is damaged by the eggs laid by the 
beetle Xanthogaleruca luteola Müler (Coleoptera: 
Chrysomelidae), it releases a blend of OIPVs that 
attracts the specialist egg parasitoid Oomyzus gallerucae 
Fonscolombe (Hymenoptera: Eulophidae). This study 
showed that the homoterpene DMNT is an important 
component in the attraction of this egg parasitoid. In 
field tests, plants with DMNT‑baited traps attracted 
more O. gallerucae than plants with unbaited ones 
(Büchel et al., 2011). It should be highlighted that there 
are no studies showing the attraction of Platygastridae 
parasitoids to OIPVs without the association of other 
volatiles. However, in a study to evaluate the influence 
of volatiles released by egg extracts of the stink bug 
E. heros and of soybean plants treated with them on 
the foraging behavior of T. podisi, this parasitoid 
was attracted to: volatiles emitted by one egg cluster 
compared to air; the acetonic extract of one egg cluster 
compared to acetone; and the acetonic extract of one 

egg cluster compared to the acetonic extract of 100 
egg clusters. These results suggest that one egg cluster 
and its acetonic extract have volatile compounds 
that change T. podisi foraging behavior, and that the 
amounts and surroundings of these compounds are 
important for their recognition by this parasitoid.

Semiochemicals from host or host‑associated 
to manage parasitoids

For plant volatiles, there is a large amount 
of information about chemicals from host or 
host‑associated cues that parasitoids exploit when 
foraging. These cues can include: sex, alarm, or 
other pheromones; host‑derivative products, as feces/
frass, debris, scale, honeydew, or host footprints; or 
habitat or microhabitat components (Godfray, 1994; 
Fatouros et al., 2008; Colazza et al., 2010). According 
to Aldrich (1985), an egg parasitoid can use chemical 
information produced by stink bugs to locate females 
and, indirectly, stink bug eggs.

Differently from HIPVs and OIPVs, host or 
host‑associated cues are used by parasitoids during 
different steps of host searching and selection behavior, 
as in habitat location, host location, or host selection 
(Godfray, 1994; Fatouros et al., 2008). Furthermore, 
cues associated to host location and host selection 
present a more diverse nature than cues used for habitat 
location, and could stimulate other behaviors than taxis 
or kinesis locomotor responses, which are typically 
recorded when parasitoids are stimulated with HIPVs 
and OIPVs (Laumann et al., 2011; Michereff et al., 
2011, 2013).

In general, information from plants, such as 
herbivore‑ or oviposition‑induced volatiles, is used as 
long‑range cues to locate the host (Kessler & Baldwin, 
2002; Moraes et al., 2005, 2008). For short‑range 
cues, when close to the host, parasitoids may use 
defensive compounds, sex pheromones, and cuticular 
hydrocarbons (Borges et al., 1998, 2003; Laumann 
et al., 2009). When parasitoids are close to the host 
or have physical contact with it, semi‑ or non‑volatile 
compounds, such as footprints and egg composition, 
become important for host final recognition, as well as 
other physical or visual factors, such as texture, color, 
and vibratory information (Borges et al., 2003; Aquino 
et al., 2012) (Figure 1).



Semiochemicals from plants and insects on the foraging behavior 459

Pesq. agropec. bras., Brasília, v.51, n.5, p.454-464, maio 2016
DOI: 10.1590/S0100-204X2016000500005 

Telenomus podisi is an egg parasitoid of pentatomid 
bugs that prefers egg masses of the Neotropical 
brown stink bug, E. heros, whereas T. basalis shows 
preference for egg masses of the Southern green stink 
bug, N. viridula (Corrêa‑Ferreira, 2000; Sujii et al., 
2002). Despite this preference, Tognon et al. (2014), 
while studying the influence of original hosts on the 
chemotaxic behavior and parasitism of T. podisi, 
observed that when Tibraca limbativentris Stål 
(Hemiptera: Pentatomidae) was the original host, the 
females parasitized this species over E. heros, whereas 
those emerging from E. heros exclusively parasitized 
E. heros’ eggs, suggesting that the original host can 
exert influence on their choice. It is important to note 
that the parasitoid’s host searching begins with an 
innate behavior; however, this can be modified by 
successive exposure to a particular host, which can 
result in learning behavior during the development of 
the immature stage, remaining as an olfactory memory 
in the adult stage (Vet & Dicke, 1992; Tognon et al., 
2013).

Studies have shown that the parasitoid species 
T. podisi and T. basalis, besides HIPVs, use 
semiochemicals from stink bugs and also from their egg 
masses. Several arena bioassays have been carried out 
using single and/or simultaneous stimuli, such as egg 
masses; live virgin E. heros males and females; volatile 
extracts of sexually mature E. heros males and females; 
2,6,10‑methyl‑trimethyltridecanoate, a component 
of the E. heros sex pheromone; (E)‑2‑hexenal, a 
component of the E. heros metathoracic gland; and 
hexane or air as a control. In these assays, T. podisi 
females responded to the E. heros male extracts, 
to 2,6,10‑methyl‑trimethyltridecanoate, and to 
(E)‑2‑hexenal, showing that they use chemical cues from 
E. heros to find their host egg masses (Borges & Aldrich, 
1992; Silva et al., 2006). Trissolcus basalis responds 
positively to 4‑oxo‑(E)‑2‑hexenal and (E)‑2‑decenal, 
two major components present in N. viridula glandular 
secretion, whereas T. podisi is attracted to crude 
gland extracts of the preferred host, E. heros, and 
has its walking pattern altered when stimulated with 
4‑oxo‑(E)‑2‑hexenal (Silva et al., 2006). Besides that, T. 
podisi also responds positively to two major components 
of E. heros glands: (E)‑2‑hexenal and tridecane. These 
results indicate some degree of specialization in the 
response of two generalist parasitoid species towards 
defensive secretions of stink bugs (Laumann et al., 

2009). Telenomus calvus (Ashmead) uses pheromones 
produced by male Podisus maculiventris and Podisus 
neglectus (Westwood) (Hemiptera: Pentatomidae) as 
an indirect mechanism to locate Podisus eggs (Aldrich, 
1995). This parasitoid requires eggs less than 12 hours 
old to successfully develop, and so it needs a reliable 
method of locating fresh eggs. All pheromone blends of 
male Podisus sp. contain (E)‑2‑hexenal, benzyl alcohol, 
and α‑terpineol, providing a reliable cue for the wasp.

At short‑range foraging behavior, T. podisi 
recognizes volatile footprints from E. heros males 
(Borges et al., 2003; Silva et al., 2006). Two different 
strains of T. podisi, one from Brazil and the other 
from the USA, show different foraging behavior when 
stimulated by E. heros footprints. The Brazilian strain 
recognizes E. heros footprints, whereas the North 
American one does not show the same behavior and 
ignores the footprints of E. heros females, despite the 
fact that these parasitoids were reared from E. heros 
eggs (Borges et al., 2003). The obtained results indicate 
a high degree of specialization of natural enemies to 
recognize the adequate host. The North American strain 
used as host mainly eggs from N. viridula and from 
other North American species of the genus Euschistus 
(Borges et al., 2003). The same was observed for 
T. basalis, which could differentiate footprints from 
females and males of its host N. viridula (Colazza 
et al., 2007). The chemical footprints of N. viridula left 
on leaves change the foraging behavior of T. basalis; 
and the chemical footprints induce arrestment 
behavior on this egg parasitoid (Colazza et al., 2009). 
In another study, Salerno et al. (2009) showed that 
T. brochymenae prefers the traces left by mated females 
of M. histrionica, when compared to traces from virgin 
females, males, or parous host females.

In a multisensory condition, T. podisi uses olfactory 
signals to find its host at long distance. This corroborates 
previous studies that showed that host location is 
oriented primarily by olfactory cues released directly 
from the nontarget host egg, which is more detectable 
and reliable (Vet & Dicke, 1992; Borges et al., 1998). 
However, in this case, visual information from the 
substrate could be relevant (Aquino et al., 2012). Once 
on the plant, the parasitoid probably passes through 
different steps of searching behavior. The initial 
searching behavior could be random or may show 
directionality mediated by the stink bug’s vibratory 
signals, visual cues, or even chemicals with low 
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volatility, such as cuticular hydrocarbon or volatiles 
from egg masses and footprints (Borges et al., 2003; 
Conti et al., 2010; Laumann et al., 2011; Tognon et al., 
2014), followed by the final recognition of the host 
through chemical and physical contact traits, including 
visual cues (Figure 1).

The potential to apply semiochemicals in 
arable crops to attract parasitoids

Semiochemicals can be applied directly on plants, as 
spray, inducing the production of defensive chemical 
volatiles, which attract parasitoids, or by using a slow 
release dispenser, which releases the semiochemical, 
attracting directly natural enemies (Simpson et al., 
2011; Vieira et al., 2013). The use of semiochemicals as 
a strategy to improve biological control has potential to 
work by itself, but, if combined with other strategies, 
its success could probably be enhanced. In general, 
parasitoids follow chemical cues to find their host, but 
if they do not find the host or a reward, i.e., food or any 
factor that retains them in the area, they can associate 
this chemical cue to the absence of host or food, and, by 
learning this new information, change their response by 
ignoring this cue (Vet & Dicke, 1992; Blassioli‑Moraes 
et al., 2013). Therefore, semiochemicals could be 
applied together with habitat manipulation, using a 
diversity of plants containing nectar or using push‑pull 
systems, combining different stimuli to manipulate 
natural enemies and pest behavior (Cook et al., 2007; 
Simpson et al., 2011).

In Brazil, there are few examples of field experiments 
using semiochemicals to attract and retain parasitoids 
in field conditions. Two compounds have been 
evaluated in soybean fields using different approaches: 
(E)‑2‑hexenal, with slow release dispensers (rubber 
septa) distributed randomly on the plots (Vieira et al., 
2014); and cis‑jasmone, a natural phytohormone 
that induces the indirect defense of soybean plants 
(Moraes et al., 2009), sprayed directly on soybean 
plots, inducing them to produce volatiles (Vieira 
et al., 2013). Both strategies attracted Platygastridae 
egg parasitoids. According to Vieira et al. (2013), the 
richness of parasitoids was higher in soybean areas with 
greater plant diversity than in soybean areas only with 
Crotalaria juncea L. (Fabales: Fabaceae) matrix plots.

The number of studies conducted in field conditions 
using semiochemicals increased in the last few years, 
but information is still scarce (Blassioli‑Moraes et al., 

2013). This is mainly due to the difficulties in knowing 
which compound is attractive to parasitoids in laboratory 
bioassays. Besides this, there are several other questions 
that need to be answered before field tests are placed: 
what amount of compounds should be used? how 
should they be applied? and what is the release rate 
necessary to attract these parasitoids? (Simpson et al., 
2011; Blassioli‑Moraes et al., 2013; Colazza et al., 
2013). Considering these issues, one alternative is to 
manipulate the plants to produce and release specific 
volatiles, which can be done by classical breeding 
or genetic engineering (Schnee et al., 2006; Kunert 
et al., 2010; Michereff et al., 2011; Bruce et al., 2015). 
There is no example in the literature on this subject for 
transgenic transformed arable crops. However, maize 
transformed with a (E)‑β‑caryophyllene synthase gene 
from oregano (Origanum vulgare L.), resulting in 
constitutive emissions of this sesquiterpene, attracts 
more entomopathogenic nematodes, minimizing the 
damage provoked by Diabrotica spp. (Coleoptera: 
Chrysomelidae) root larvae (Degenhardt et al., 2009). 
One of the major questions concerning the continuous 
release of volatiles by modified plants, which, in a 
natural context, would only occur when the plants are 
disturbed, is if this difference on release timing will 
have the same effect on natural enemies (Kunert et al., 
2010). An alternative to this problem is to identify 
genes that prime the chemical defense of the plants.

An easy way to manipulate natural enemies in the 
field is to detect cultivars and plants that can naturally 
attract natural enemies and keep off herbivores. 
Recently, Michereff et al. (2015) showed that three 
different soybean cultivars – two resistant (Dowling 
and IAC 100) and one susceptible (Silvânia) – attracted 
differently the egg parasitoids T. podisi and T. basalis, 
from the Platygastridae family, in field conditions. The 
authors suggest that volatiles released by the Dowling 
cultivar, which attracted more parasitoids, might be 
involved in this differential attraction.

Parasitoids can be highly specialized in relation to 
the chemical cues used for host searching. Moreover, 
in several plant‑herbivore‑parasitoid systems, this 
specificity could be related to plant genotypes, plant 
physiology, phenological stages, host developmental 
stage, among others (Turlings et al., 1995; Moraes et al., 
2005). This suggests that the use of semiochemicals 
for parasitoid management needs to be studied 



Semiochemicals from plants and insects on the foraging behavior 461

Pesq. agropec. bras., Brasília, v.51, n.5, p.454-464, maio 2016
DOI: 10.1590/S0100-204X2016000500005 

case‑by‑case, and adaptations should be introduced in 
each particular situation.

Concluding remarks

These and other studies show that the interaction 
plant‑natural enemies mediated by HIPVs and OIPVs 
has a decisive role on parasitoid host‑searching 
behavior, and that plant biology, genetic and 
phenotypic characteristics also have a determinant 
role on community dynamics and biodiversity, with 
evolutionary consequences for both plant and natural 
enemies (Hare, 2011).

To summarize, plants have developed sophisticated 
defense strategies against biotic stressors (pests) 
using a variety of inducible defense mechanisms 
that can be exploited in crop protection. Besides 
their effect against herbivores and their attraction 
of natural enemies, the small lipophilic molecules 
released by plants also affect neighboring plants, 
which can respond to stress signaling by elicitation or 
augmentation (priming) of the defense response (Kim 
& Felton, 2013; Erb et al., 2015). The ability to elicit or 
prime crop plants for defense upon detection of plant 
stress signaling provides an opportunity to develop 
new mixed cropping systems, and the identified stress 
signals associated with pest damage in the sentinel 
(guard crops) can be used for the activation of defense 
responses in the main crop.

Therefore, plant volatiles can be used in the field 
with different approaches: to apply synthetic plant 
semiochemicals to induce plant defense or attract 
natural enemies; in intercropping or multiple cropping 
systems, using plants that release volatiles that attract 
natural enemies and repel herbivores, pushing away the 
pests from the target crop; and to provide trap crops that 
are cultivated around the target crop to attract the pests.

Although there is a considerable amount of studies 
on the use of semiochemicals by natural enemies, 
the knowledge of how these semiochemicals can be 
applied in field conditions to favor the action of these 
parasitoids is still limited. Research on the learning 
ability of Platygastridae parasitoids and on how they 
recognize odor blends will provide information about 
the right doses and the right time for the application 
of semiochemicals, greatly helping in their correct 
application in the field.
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