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Abstract – The objective of this work was to delineate irrigation management zones using geostatistics and 
multivariate analysis in different combinations of physical and hydraulic soil properties, as well as to determine 
the optimal number of management zones in order to avoid overlaping. A field experiment was carried out in a 
Quartzipsamment, for two years, in an irrigated orchard of table grape, in the Senador Nilo Coelho Irrigation 
Scheme, in the municipality of Petrolina, in the state of Pernanbuco, Brazil. Soil samples were collected for 
the determination of soil physico-hydraulic properties. A portable meter was used to measure soil apparent 
electrical conductivity. Spatial distribution maps were generated using ordinary kriging. Management zones 
for five different combinations of soil properties were defined using the fuzzy c-means clustering algorithm, 
and two indexes were applied to determine the optimal number of management zones. Two combinations of 
soil properties can be used in the management zone planning in order to monitor soil moisture.

Index terms: fuzzy c-means, geostatistics, irrigation planning, precision agriculture, soil apparent electrical 
conductivity, spatial variability. 

Delineamento de zonas de manejo da irrigação em Neossolo 
Quartzarênico na região do Semiárido brasileiro

Resumo – O objetivo deste trabalho foi delinear zonas de manejo da irrigação, por meio de geoestatística e 
análise multivariada em diferentes combinações de atributos físico-hídricos do solo, bem como determinar 
o número ótimo de zonas de manejo para evitar sobreposições. Um experimento de campo foi realizado em 
Neossolo Quartzarênico, por dois anos, em pomar irrigado de videira de mesa, no perímetro irrigado Senador 
Nilo Coelho, em Petrolina, PE. Amostras de solo foram coletadas para a determinação das propriedades 
físico-hídricas. Um medidor portátil foi utilizado para medições da condutividade elétrica aparente do solo. 
Mapas de distribuição espacial foram gerados por krigagem ordinária. Zonas de manejo para cinco diferentes 
combinações de atributos foram delimitadas com uso do algoritmo de agrupamento fuzzy c-means, e dois 
índices foram aplicados para determinar o número ótimo de zonas de manejo. Duas combinações de atributos 
do solo podem ser utilizadas no planejamento das zonas de manejo, para o monitoramento da umidade do 
solo.

Termos para indexação: fuzzy c-means, geoestatística, planejamento da irrigação, agricultura de precisão, 
condutividade elétrica aparente do solo, variabilidade espacial.

Introduction
The knowledge of the spatial variability of soil 

physical and hydraulic properties which influence 
the soil water dynamics can improve irrigation 
management. Geostatistics can contribute to the 
understanding of this variability (Grego et al., 2014), 
but each soil property should be assessed separately.

Kitchen et al. (2005) and Valente et al. (2012) suggest 
that management zones should be defined by evaluating 
more than one soil property. Therefore, multivariate 
analysis can help to delineate management zones, 

besides facilitating the study of various soil properties. 
Li et al. (2007) reported that multivariate analysis 
clustering effectively identifies management zones 
because it is simple, functional, and economically 
viable. Morari et al. (2009) claim that the combination 
of geostatistical interpolation and multivariate 
clustering analysis aids the precision viticulture by 
enabling the efficient division of a cultivation area into 
management zones.

Several studies have used a combination of 
clustering analysis with fuzzy c-means algorithm 
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(FCM) (Bezdek et al., 1984) and geostatistical analysis 
to delineate management zones (Li et al., 2007; Morari 
et al., 2009; Moral et al., 2010; Wang et al., 2012). 
Odeh et al. (1992) found that this algorithm generates 
continuous clustering and it is, therefore, helpful in 
defining management zones with continuous soil 
properties. Other clustering analyses used for this 
purpose include Ward minimum variance (Fleming 
et al., 2000), fuzzy k-means (Song et al., 2009), and 
colony (Hou et al., 2016).

Soil apparent electrical conductivity (ECa) has also 
been used as an auxiliary parameter in delineating 
management zones (Kitchen et al., 2005; Li et al., 2007; 
Valente et al., 2012) because of its strong correlation 
with different soil properties (Moral et al., 2010; Molin 
& Rabello, 2011; Kweon et al., 2013). Nevertheless, 
there are very few studies using ECa to delineate 
management zones for sandy and sandy loam soils of 
largely irrigated agricultural areas, such as those in the 
Submédio São Francisco River Basin, located in the 
semiarid region of Brazil.

ECa indicates seasonal variations based on soil water 
content changes (Brevik et al., 2006; McCutcheon 
et al., 2006). These variations can affect the interaction 
between ECa and other stable soil properties. Cox 
(2005) reported that cluster analysis identifies patterns 
and characteristics via data partition. Jaynes et al. 
(2005) used cluster analysis to find temporal and 
spatial patterns related to soybean yield using data 
collected for several years. The application of cluster 
analysis in ECa data, when temporally and spatially 
represented, can assist in the identification of temporal 
patterns in the data.

The objective of this work was to delineate 
irrigation management zones by assessing different 
combinations of physical and hydraulic soil properties, 
using geostatistics and multivariate analysis. The 
output would be used to determine the optimal number 
of management areas, in order to avoid overlapping.

Materials and Methods

This study was carried out in a vineyard of 
'Thompson Seedless' grapevines grafted on 'SO4' 
rootstock, planted in May 2004, and trellised 
in a multiwire, horizontal system. The 1.6 ha 
experimental area had 20 rows and 82 plants per 
row, in 2.5 m spacing between vines, and 4.0 m 

between rows. The area is located in the farm 180 
of Senador Nilo Coelho Irrigation Scheme, Sector 
5 (9°23'12.8"S, 40°38'13.8"W, at 394 m altitude), 
in the Submédio São Francisco River Basin, in 
Petrolina county, in the state of Pernambuco, Brazil. 
The irrigation system was a microsprinkler with one 
emitter per plant. Its estimated f low was 30 L h-1, and 
its wet area was 2.4x2.5 m. The soil in the area was 
classified as a Neossolo Quartzarênico (Santos et al., 
2013), which corresponds to a Quartzipsamment in 
the soil taxonomy classification.

The variability of physico-hydraulic soil 
properties was evaluated by defining two transects 
in the study area, located in rows 5 and 15. Each 
transect had forty points separated every 5 m. There 
were eighty sampling points (Figure 1). Deformed 
soil samples were collected using an Edelman auger, 
and undeformed soil samples were collected using a 
cylindrical ring (0.05x0.05 m). Samples were taken 
in 2011 at 0.00–0.20 and 0.20–0.40 m soil layers. 
The grower numbered the rows and plants, which 
facilitated georeferencing of each collection site.

In the deformed samples, sand, silt, and clay 
granulometric fractions were determined (kg kg-1), 
accordingly to Donagema et al. (2011). The 
centrifugation method (Silva & Azevedo, 2002) 
was used to determine soil moisture (m3 m-3) at 
field capacity (θfc, moisture retained at 0.006 MPa), 
and the permanent wilting point (θpwp, moisture 
retained at 1.5 MPa). Available water (AW, m3 m-3) 
was obtained by measuring the difference in the 
water content between θfc and θpwp. Soil density (Ds,  
kg dm-3) was determined in undeformed samples 
using the volumetric ring method. Representative 
values of the soil layer at 0.00–0.40 m soil layer were 
obtained by calculating the arithmetic averages in 
each sampled layer.

ECa (dS m-1) was measured in 2012 at 0.00–0.40 m 
soil layer, using a portable meter (Rabello et al., 
2010) at 100 and 101 days after pruning (DAP) of the 
grapevines. Sampling all twenty rows, separated at 
every second plant, resulted in a 4.0×5.0 m grid and 
820 sampling points (Figure 1). Other measurements 
were performed in 2012 at 57 and 60 DAP, and in 
2013 at 63, 78, and 91 DAP, using rows 1, 5, 10, 15, 
and 20, separated at every second vine, for a total of 
205 sampling points.
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For all data sets, descriptive statistics were 
determined (mean, median, maximum, minimum, 
standard deviation, coefficient of variation (CV), 
skewness, and kurtosis). The normality of the 
data sets was determined using the nonparametric 
Kolmogorov-Smirnov test.

The spatial distribution of variables was 
characterized by building experimental 
semivariograms, and adjusting theoretical models 
and their respective setting parameters (nugget 
effect, sill, and range of spatial dependence). 
The quality of the adjustments was assessed by 
calculating the spatial dependence index (SDRz), 
proposed by Zimback (2001), and SDR, by Seidel & 
Oliveira (2014). Cross-validation was performed for 
both the regression coefficients (RC), which indicate 
whether the kriging underestimates or overestimates 
extreme values, and the determination coefficients 
(R²) were evaluated. The adjusted models were then 
used in an ordinary kriging procedure to interpolate 
the sampled values in unsampled locations. Isoline 
maps were built for each property, employing the 
interpolated values in a single grid of 2.58 × 1.31 
m for a total of 4,992 interpolation points. The 
geostatistical and map-building procedures were 
performed using GS+ (Robertson, 1998).

For the cluster analysis, the interpolated values 
were standardized to obtain the same amplitude for 
all sets of properties, with a mean value equal to 
0 and standard deviation equal to one. Guo et al. 
(2012) reported that this procedure is a prerequisite 
for multivariate cluster analysis.

Multivariate cluster analysis was performed 
using the FCM algorithm (Bezdek et al., 1984) 
and the e1071 package (Meyer et al., 2014) from R 
software (R Core Team, 2012). The area was divided 
into different management zones, according to the 
following interpolated attributes: C1, physical and 
hydraulic soil properties; C2, ECa for 205 points 
(57 and 60 DAP), and 820 points (100–101 DAP), 
during the 2012 grapevine growing season; C3, ECa 
for 205 points, during the 2013 grapevine growing 
season (63, 78, and 91 DAP); C4, ECa in 2012 and 
2013; and C5, ECa in 2012 and 2013 combined with 
the physical and hydraulic soil properties.

The FCM clustering analysis assigns degrees of 
association with each management zone (grouping) 
to the points of interpolated values (individuals), 
allowing the evaluation of the relationship between 
each individual and each group (Cox, 2005). This 
analysis is an iterative process that results in the 
optimal division of data into a number of groupings.

The initially assigned variables were: the number 
of interactions (K); the fuzzy weight exponent (m), 
ranging from 1 to ∞; and the number of management 
zones. K should meet the criterion of completing the 
iterative process (Ɛ). For this study, the criteria used 
by Odeh et al. (1992) were adopted with ɛ = 0.001. 
Therefore, K = 50 sufficed to meet the adopted Ɛ 
value. Cox (2005) indicated that m is usually used 
in the range of 1.25 to 2.0. Therefore, m was defined 
as 1.25 for all combinations of variables.

The optimal number of management zones was 
chosen by testing the cluster analysis for 2, 3, 4, 

Figure 1. Representation of soil sampling sites, and readings of soil apparent electrical conductivity (ECa), in different days 
after pruning (DAP) of the grapevines.
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5, and 6 zones. The optimal number of zones was 
validated using the fuzziness performance index 
(FPI) and the modified partition entropy (MPE). 
These parameters were used in several studies (Odeh 
et al., 1992; Fridgen et al., 2004; Sun et al., 2012). 
According to Fridgen et al. (2004), FPI measures 
the separation degree of individuals (classified by 
cluster analysis) from the generated clusters. Its 
value varies between 0 and 1. The closer the FPI 
is to zero, the smaller is the overlap between the 
management zones, and, consequently, the better 
defined is the partition (Odeh et al., 1992). The 
MPE measures the degree of disorganization of 
individuals between groups. Its value varies between 
0 and 1, and values closer to zero indicate better 
organized groups (Fridgen et al., 2004). Therefore, 
the optimal number of management zones should 
give the lowest values for these functions.

After the optimal number of zones has been 
identified, for each combination of properties, each 

interpolated point will belong only to the area where 
it showed the highest degree of association. This 
process is known as defuzzification (Guastaferro 
et al., 2010). After the partitions and spatial 
locations were obtained for each interpolated point, 
management zone maps were made using GS+ 

(Robertson, 1998).
Soil sampling points and ECa measurement sites 

were superimposed onto the management zone maps 
of each property combination to associate points 
with management zones. Therefore, the values 
of each physico-hydraulic soil property and each 
ECa measurement, representative of 0.00–0.40 m 
soil layer, were separated into different data sets 
corresponding to the points of each management 
zone. Their averages were calculated. Significant 
differences in the average values of each data set 
from each management area were evaluated by 
analysis of variance using Tukey’s HSD (honestly 
significant difference) test (Figure 2). 

Measurement of ECa at 57, 60, and 100–101 DAP

in 2012 and at 63, 78, and 91 DAP in 2013

Data from physical-hydric soil properties at the
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Figure 2. Flowchart of the procedure stages.
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Results and Discussion
Data for sand, silt, clay, and AW (available water) 

contents were normally distributed whereas the Ds 
data distribution was not, according to the results 
of the Kolmogorov-Smirnov test. For ECa, only 
measurements at 57 DAP (2012) and 63 DAP (2013) 
showed normal distribution.

Although data normality is desirable, it is not 
absolutely necessary for kriging (Moral et al., 
2010), as long as the distribution does not include 
many elongated tails (Cressie, 1993). In the 
present study, data were not normally distributed 
(Table 1); however, since the kurtosis coefficients 
were relatively close to zero, the tails were only 

slightly elongated and allowed the application of 
geostatistics.

The coefficient of variation (CV) for sand and Ds 
data was lower than 12%, indicating low variability. 
For the remaining properties, however, the variation 
was intermediate (12%< CV <60%), as proposed 
by Warrick & Nielsen (1980). Corwin et al. (2006) 
found similar CV values for clay, Ds, AW, and ECa 
at different depths in clay loam soils. Molin & Faulin 
(2013) classified CV in a similar way for clay and ECa 
data in two areas with medium soil texture. 

The model, when adjusted to the experimental 
semivariogram, ranged between Gaussian and spherical 
for the physical and hydraulic soil properties (Table 2). 

Table 1. Descriptive statistics and normality test of soil properties at the 0.00–0.40 m soil layer in Quartzipsamment.

Soil property n Average Center Minimum Maximum SD CV (%) Skewness Kurtosis D(1)

Sand (kg kg-1) 80 0.844 0.844 0.768 0.895 0.02 2.36 -0.73 2.36 0.08ns

Silt (kg kg-1) 80 0.098 0.097 0.055 0.170 0.02 22.14 0.71 1.21 0.09ns

Clay (kg kg-1) 80 0.058 0.060 0.032 0.079 0.01 22.17 -0.25 -0.92 0.10ns

AW (m³ m-3) 80 0.096 0.096 0.066 0.131 0.01 14.82 0.27 -0.20 0.06ns

Ds (kg dm-3) 80 1.43 1.45 1.28 1.52 0.06 4.13 -0.87 -0.05 0.15*
ECa 2012 (dS m-1)

57 DAP 205 10.3 10.1 5.5 17.9 2.62 25.36 0.57 0.22 0.06ns

60 DAP 205 11.7 11.3 5.8 20.7 2.63 22.44 0.61 0.17 0.09*
100–101 DAP 820 8.9 8.7 4.2 18.1 1.95 21.93 0.71 1.02 0.08*

ECa 2013 (dS m-1)
63 DAP 205 11.6 11.5 6.1 19.6 2.54 21.84 0.25 -0.06 0.04ns

78 DAP 205 7.4 7.2 1.8 14.2 2.24 30.11 0.20 0.04 0.07*
91 DAP 205 7.2 5.9 1.9 18.3 3.95 55.04 1.12 0.14 0.18*

(1)Normality test of Kolmogorov-Smirnov, in which: ns, nonsignificant; and *, significant at 5% probability. AW, available water; Ds, soil density; ECa, soil 
apparent electrical conductivity; DAP, days after pruning; n, number of samples; SD, standard deviation; and CV, coefficient of variation.

Table 2. Theoretical semivariogram models with their respective parameter settings, and cross-validation of soil properties 
at 0.00–0.40 m soil layer in Quartzipsamment.

Soil property Model Nugget 
effect

Sill Range 
(m)

SDR(1) 
(%)

SDRz(2) 

(%)
R2

model Cross-validation
CR R2

validation

Sand (kg kg-1) Exponential 0.00024 0.00048 85.5 13.7 50.2 0.953 0.805 0.144
Silt (kg kg-1) Gaussian 0.00034 0.00053 55.5 10.0 35.5 0.690 0.772 0.119
Clay (kg kg-1) Spherical 0.00004 0.00017 40.6 12.2 79.9 0.867 0.992 0.552
Available water (m³ m-3) Spherical 0.00004 0.00028 146.2 31.7 84.6 0.939 1.051 0.710
Soil density (Ds, kg dm-3) Gaussian 0.00095 0.00394 60.6 23.3 75.9 0.921 0.966 0.588
ECa 2012 (dS m-1)

57 DAP Spherical 3.767 7.021 36.0 6.0 46.3 0.905 0.934 0.230
60 DAP Spherical 3.590 7.705 90.3 17.3 53.4 0.907 1.053 0.354
100-101 DAP Spherical 2.059 3.933 46.9 8.0 47.6 0.992 1.035 0.379

ECa 2013 (dS m-1)
63 DAP Spherical 2.830 7.520 99.0 22.1 62.4 0.957 1.104 0.447
78 DAP Spherical 1.290 4.988 35.8 9.5 74.1 0.979 0.979 0.475
91 DAP Gaussian 0.010 16.660 25.6 12.3 99.9 0.876 0.756 0.656

(1)SDR, spatial dependency ratio: 0≤ SDExponential (%)≤31.70; 0≤SDRSpherical (%)≤ 37.50; and 0≤SDRGaussian(%)≤ 50.40 (Seidel & Oliveira, 2014). (2)SDRz, 
spatial dependency ratio (Zimback, 2001). ECa, soil apparent electrical conductivity; DAP, days after pruning; and CR, coefficient of regression.
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Our study corroborate the results of the following 
authors: Terra (2012), who found that the same models 
adjusted for the attributes sand (exponential), clay, and 
Ds (spherical); Parfitt et al. (2009), who obtained a 
Gaussian fit for silt; and Molin & Faulin (2013), who 
found a spherical model for ECa in different time 
periods.

The adjusted models were highly accurate for most 
variables, except for silt, which showed lower R² values 
than other parameters (Table 2). The range values 
indicated that the sampling density was adequate to 
achieve spatial dependence for all studied variables. 
The range value of attribute AW was higher than 
those of the other variables, which indicates greater 
homogeneity of AW throughout the study area. For 
future samplings, the distance among samples for each 
physico-hydraulic soil property should be less than 
its range values to ensure spatial dependence among 
samples.

The SDR proposed by Seidel & Oliveira (2014) 
indicated that AW, Ds, and ECa data at 60 and 63 DAP 
(in 2012 and 2013, respectively) showed higher spatial 

dependence (Table 2). The SDR proposed by Zimback 
(2001) was strong (SDRz >75%) for the  clay, AW, Ds, 
and ECa, after 91 DAP (2013); the remaining attributes 
and ECa measures had moderate spatial dependence 
(25%< SDRz ≤75%). Thus, spatial dependence was 
observed for all ECa data. AW and Ds had the highest 
spatial dependence, indicating higher quality of the 
spatial distribution maps for these variables.

CR and R2 values of the cross-validation were 
adequate, except for the sand and silt fractions, and 
ECa at 57 DAP (2012) and 91 DAP (2013), which 
showed a lower quality of the model adjusted for the 
semivariogram when compared with the other data 
sets. Parfitt et al. (2009) obtained 0.88, 0.90, and 0.91 
CR values, and 0.27, 0.68, and 0.78 R2 values for clay, 
silt, and sand, respectively, in medium-textured soils.

The results of validation for the optimal number of 
management zones for each combination are presented 
in Figure 3. The lowest values of each index for an 
equal number of management zones were obtained for 
the combinations C1, C3, C4, and C5, with 3, 2, 2, and 
5 management zones respectively. For C2, the lowest 

Figure 3. Fuzziness performance index (FPI) and modified partition entropy (MPE), for different numbers of combinations 
in management areas, wherein: C1, combination of physical and hydraulic soil properties; C2, data of soil apparent electrical 
conductivity (ECa) measured in 2012; C3, ECa measured in 2013; C4, ECa measured in 2012 and 2013; and C5, ECa 
measured in 2012 and 2013, and physical and hydraulic soil properties, at 0.00–0.40 m soil layer in Quartzipsamment.
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FPI was two management zones, and the lowest MPE 
was four zones. Nevertheless, with three management 
zones, these two indexes were simultaneously low, 
so this number of zones was adopted as optimal 
for this combination. Overall, the range of the ideal 
number of management zones determined in several 
studies is similar to that found in the present study. Li 
et al. (2007) and Morari et al. (2009) suggested that 

three zones were ideal, whereas Guastaferro et al. 
(2010) proposed two zones as the optimal number.  
Valente et al. (2012) used different combinations 
of variables, and found different optimal numbers 
of zones; however, they adopted three zones as the 
standard for all combinations because this number 
predominated. It was found that the clay attribute had 
the greatest heterogeneity in the study area (Figure 4). 

Figure 4. Spatial distribution maps of physical and hydraulic soil properties, and management zones obtained with the 
combination of the physical and hydraulic soil properties (C1) at the 0.00–0.40 m soil layer in Quartzipsamment.
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This observation is consistent with its lower range value 
(Table 2). 

The spatial distribution was similar for the AW and Ds 
maps (Figure 4). The lowest values were concentrated 
in the upper right side of the maps. This result indicates 
that AW can only be estimated with Ds data for this 
soil type. This limitation may reduce testing costs. The 
similarity between the spatial distributions of AW and 
Ds may be due to the higher percentage of macropores 
in sandy and sandy loam soils than that in clay soils; 
when Ds increases, this percentage decreases while 
the water retention capacity of those soils increases. In 
those soils, the micropores – which retain moisture at 
> 1.5 MPa tensions owing to the increase in Ds – are 
in small proportion and have limited influence on AW, 
when compared with the decrease of the macropore 

proportion. Grego & Vieira (2005) reported similar 
results for Oxisols, in which AW was higher in regions 
with higher Ds.

Comparison of management zone maps with those 
for the spatial distributions of the physico-hydraulic 
soil properties (Figure 4) indicates that clustering 
separated the larger values of AW and Ds in zone 3, 
the higher percentage of clay and the lower percentage 
of sand in zone 2, and the higher percentage of clay 
and the lower percentage of silt in zone 1.

Higher values were observed on the left side of the 
ECa spatial distribution map and on the right side 
above the center (Figure 5). During the two-year study 
period, as the DAP increased, the regions with larger 
ECa values decreased. Since there was little variation 
in soil texture, ECa varied due to a decrease in soil 

Figure 5. Spatial distribution maps of soil apparent electrical conductivity (ECa), in different days after pruning (DAP) of 
grapevines in 2012 and 2013, and management zone maps obtained with ECa data measured in 2012 (C2) and in 2013 (C3), 
at 0.00–0.40 m soil layer in Quartzipsamment.
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moisture (θ). In 2012 and 2013, the grapevines were 
irrigated throughout their growing seasons, but the 
amount of irrigation water applied was lower in the 
final stages of each season, due to the lower water 
demand by plants. According to Nascimento (2013), in 
2012, the average θ (0.0093 m3 m-3) at 0.00–0.45 m soil 
layer, at 100 and 101 DAP, was lower than it was at 57 
DAP (0.101 m3 m-3) and at 60 DAP (0.0097 m3 m-3). In 
2013, the average θ value at 91 DAP (0.0092 m3 m-3) 
was lower than that at 63 DAP (0.109 m3 m-3) and at 78 
DAP (0.108 m3 m-3). 

Comparison of the spatial distribution maps with 
those for the management zones of combinations C2 
and C3 (Figure 5) indicated higher ECa in zone 3 
(from combination C2) and zone 2 (from combination 
C3). Although the distribution of the ECa was 
improved by using three management zones in 2012, 
and two in 2013, it is clear that this attribute changed 
little during the studied period, indicating temporal 
uniformity. The θ values did not vary significantly 
over the studied period.

The management zone map for combination C4 
(Figure 6) summarizes ECa monitoring during 
grapevine growing season in 2012 and 2013. The 
coverage area of zone 2 was similar to those in zones 
3 and 2 from combinations C2 and C3, respectively 
(Figure 5). They showed the highest ECa levels. 

The low variation of θ due to irrigation in the 
area  throughout the growing seasons allowed the 
determination of the spatial and temporal patterns 
of ECa. It represents various soil properties with 
instantaneous measurements, and enables greater 
detailing of the area without increasing costs.

Comparison of the management zone maps 
from combination C1 (Figure 4) with those from 
combination C5 (Figure 6) indicated that area 3 was 
divided into three other zones (zones 3, 4, and 5). This 
division is due to the addition of ECa to the cluster 
analysis, which increased detailing in the area.

The variance analysis applied to the average values 
of the physical and hydraulic soil properties, and ECa 
in each management zone obtained by FCM cluster 
analysis, indicated a significant difference between 
at least two management zones for all evaluated 
properties, with a confidence level of at least 95% 
for all combinations. This result shows that cluster 
FCM analysis, along with geostatistical analysis, 
was effective in dividing the area into management 
zones. Several other studies that used geostatistics and 
FCM cluster analysis also defined management zones 
satisfactorily (Li et al., 2007; Valente et al., 2012; Wang 
et al., 2012).

The average values of texture in the management 
zones formed by combinations C1 and C5 were similar 
in zones 1 and 2 (Table 3). In the remaining zones, 
which subdivided zone 3 (from combination C1) into 
three other zones (3, 4, and 5), higher amounts of silt 
were observed in zone 4, and higher amounts of clay 
were seen in zone 5. Both of these zones were formed 
from combination C5.

The ECa averages in combination C3 were the 
following (Table 3): high in zone 3, intermediate in 
zone 2, and low in zone 1. In the management zones 
formed from combinations C3 and C4, ECa were 
higher in zone 2 and lower in zone 1. Corwin et al. 
(2006) reported that several soil properties influence 
ECa levels. Morari et al. (2009) reported a close 
association between ECa and the physical properties 
of the soil. It was positive for the fine soil fractions 
(silt and clay), and negative for the coarse soil fractions 
(gravel and sand). In combination C5, the analysis of 
zone 5 indicated the influences of clay and Ds on the 
ECa levels. There was a strong association of high ECa 
values with high clay values and Ds, in comparison to 
the other zones. Corwin & Lesch (2005) observed that 

Figure 6. Management zone maps obtained with soil 
apparent electrical conductivity (ECa) measured at 
different days after pruning (DAP) of grapevines, in 2012 
and 2013 (C4), and the areas obtained by the combination 
of ECa data, in 2012 and 2013, and the physical and 
hydraulic soil properties (C5), at 0.00–0.40 m soil depth in 
Quartzipsamment.
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the clay fraction and Ds were directly correlated with 
ECa.

Zone 4 from combination C5 (Table 3) had the 
lowest average clay fraction and generally intermediate 
ECa values (owing to the high Ds values of that zone), 
and intermediate to high silt values in comparison 
to the other zones. In general, zone 2 had high ECa 
values, possibly because of the higher amounts of clay 
and silt in that area. Ekwue & Bartholomew (2011) 
analyzed ECa in clay, clay loam, and sandy loam soils, 
and concluded that the clay fraction influenced ECa 
in proportion to the θ values. ECa values, like those 
for Ds, were similar to AW values. Although ECa is 
theoretical,  increases in its values do not necessarily 
indicate larger θ values.

Stadler et al. (2015) evaluated the correlation between 
soil texture and ECa, in three different areas with clay 
and clay loam soils. They found correlation between 
soil texture and ECa in only one area. These authors 
concluded that the absence of correlation was due to 
low sample variability for the other soil properties. 
For the present study, in sandy and sandy loam soils, 

ECa was influenced by Ds, when combined with the 
content of clay or silt fractions. Nevertheless, only 
the division of the area into zones with homogeneous 
soil properties, and the separate analysis for each 
zone, allowed the assessment of the influence of these 
properties on ECa.

The management zone maps from combination C1 
or C5 (Figures 4 and 6, respectively) and the average 
values for the physico-hydraulic soil properties, in 
each management zone (Table 3), allowed the planning 
of the zones for monitoring  θ values in them, and the 
adoption of a differentiated irrigation management. 
Nevertheless, combination C5, which used ECa data, 
enabled greater detailing of the fine soil fractions, and 
could, therefore, help improve water use management.

Conclusions

1. The delineated management zones using 
the physico-hydraulic soil properties (C1), and 
the measurement of the soil apparent electrical 
conductivity combined with those properties (C5) 
allows the delimitation of the management zones; 

Table 3. Mean values of soil attributes in the management zones arising from combinations of physical and hydraulic soil 
properties, at 0.00–0.40 m soil depth in Quartzipsamment(1).

Management 
area

Sand Silt Clay AW Ds ECa 2012 (dS m-1) ECa 2013 (dS m-1)
--------------- (kg kg-1) --------------- (m3 m-3) (kg dm-3) 57 DAP 60 DAP 100–101 DAP 63 DAP 78 DAP 91 DAP

C1, physical and hydraulic soil properties
1 0.847a 088b 0.065a 078b 1.36b - - - - - -
2 0.821b 0.116a 0.063ab 0.085b 1.38b - - - - - -
3 0.848a 0.097b 0.055b 0.102a 1.46a - - - - - -

C2, ECa measured data in 2012
1 - - - - - 8.2c 9.3c 7.8c - - -
2 - - - - - 10.4b 11.8b 8.8b - - -
3 - - - - - 12.6a 14.2a 10.5a - - -

C3, ECa measured data in 2013
1 - - - - - - - - 10.9 6.8 5.0
2 - - - - - - - - 13.4 8.9 12.4

C4, ECa measured data in 2012 and 2013
1 - - - - - 9.8 10.9 8.4 10.8 6.6 4.9
2 - - - - - 11.4 13.3 9.9 13.3 9.0 11.7

C5, ECa measured data in 2012 and 2013 combined with C1
1 0.847a 0.090bc 0.063a 0.077b 1.36b 9.3c 10.4b 8.1c 11.8b 7.1b 5.4c
2 0.810b 0.123a 0.067a 0.089b 1.38b 11.7ab 12.4ab 9.6b 13.7a 9.6a 7.0bc
3 0.857a 0.092b 0.051b 0.100a 1.46a 8.9c 9.5c 8.2c 9.1c 5.6c 4.4cd
4 0.844a 0.112ab 0.044b 0.104a 1.47a 10.4b 12.1b 8.5c 11.8b 6.9b 7.5b
5 0.845a 0.091bc 0.064a 0.101a 1.46a 11.8a 13.5a 10.5a 13.2a 8.9a 10.6a

(1)Means followed by equal letters, among management zones, do not differ by Tukey’s HSD test, at 5% probability. AW, available water; Ds, soil density; 
ECa, soil apparent electrical conductivity. DAP, days after prunning.
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and the C5 combination provides a more detailed 
management.

2. The use of FCM clustering analysis associated 
with geostatistical analysis enables the standardization 
of the soil apparent electrical conductivity data from 
different time periods.
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