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Abstract – The objective of this work was to evaluate the reliability of the physiological meaning of the enhanced 
vegetation index (EVI) data for the development of a remote sensing-based procedure to estimate soybean 
production prior to crop harvest. Time-series data from the moderate resolution imaging spectroradiometer 
(Modis) were applied to investigate the relationship between local yield fluctuations of soybean and the 
prevailing physically-driven conditions in the state of Mato Grosso, located in the south of the Brazilian 
Amazon. The developed methodology was based on the coupled model (CM). The CM provides production 
estimates for early January, using images from the maximum crop development period. Production estimates 
were validated at three different spatial scales: state, municipality, and local. At the state and municipality 
levels, the results obtained from the CM were compared with official agricultural statistics from Instituto 
Brasileiro de Geografia e Estatística and Companhia Nacional de Abastecimento, from 2001 to 2011. The 
coefficients of determination ranged from 0.91 to 0.98, with overall result of R2=0.96 (p≤0.01), indicating 
that the model adheres to official statistics. At the local level, spatially distributed data were compared with 
production data from 422 crop fields. The coefficient of determination (R2=0.87) confirmed the reliability of 
the EVI for its applicability on remote sensing-based models for soybean production forecast.

Index terms: agriculture, EVI, Modis, remote sensing, satellite.

Modelo para previsão da produção de soja baseado 
em condições físicas predominantes

Resumo – O objetivo deste trabalho foi avaliar a confiabilidade do significado fisiológico de dados do índice 
de vegetação “enhanced vegetation index” (EVI) no desenvolvimento de um procedimento baseado em 
sensoriamento remoto para estimar a produção de soja antes da colheita. Foram aplicados dados de séries 
temporais do “moderate resolution imaging spectroradiometer” (Modis) para investigar a relação entre as 
flutuações locais na produtividade da soja e as condições físicas predominantes no Estado de Mato Grosso, 
localizado no sul da Amazônia brasileira. A metodologia desenvolvida foi baseada no modelo acoplado (CM). 
O CM fornece estimativas de produção para o início de janeiro, ao utilizar imagens do período de máximo 
desenvolvimento da cultura. As estimativas de produção foram validadas em três escalas espaciais diferentes: 
estadual, municipal e local. Nos níveis estadual e municipal, os resultados obtidos a partir do CM foram 
comparados às estatísticas agrícolas oficiais do Instituto Brasileiro de Geografia e Estatística e da Companhia 
Nacional de Abastecimento, de 2001 a 2011. Os coeficientes de determinação variaram entre 0,91 e 0,98, 
com resultado global de R2=0,96 (p≤0,01), o que indica que o modelo se ajusta às estatísticas oficiais. No 
nível local, os dados espacialmente distribuídos foram comparados a dados de produção de 422 lavouras. 
O coeficiente de determinação (R2=0,87) confirmou a confiabilidade do EVI para ser aplicado em modelos 
baseados em sensoriamento remoto, para previsão da produção de soja.

Termos para indexação: agricultura, EVI, Modis, sensoriamento remoto, satélite.

Introduction

Agricultural monitoring and forecasting are aspects 
of major priority in policies aiming to ensure food 

safety, being crucial to regulate agricultural markets 
and to plan the reduction of environmental impacts at 
various levels by social and governmental organizations 
(Masuda & Goldsmith, 2009; Nellemann et al., 2009).
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Currently, Brazil plays an important role in 
agriculture and is the second largest soybean [Glycine 
max (L.) Merr.] producer worldwide, with 65 million 
tons harvested in 2012 according to Companhia 
Nacional de Abastecimento (Conab, 2013). However, 
these estimates are based on information obtained 
by subjective methods, which usually only consider 
the municipality level. This happens due to five main 
factors: municipality-level statistics are released more 
than a year after the end of soybean harvest; there is 
a lack of fine spatial resolution for area, yield, and 
production estimates at the intra-municipality level; 
yield estimates are often quantized, causing several 
municipalities to show the same yield values; no 
measurement error is associated with the estimates, 
causing a confidence issue in the production estimates 
(Gusso et al., 2012; Johann et al., 2012); and estimates 
tend to overlap, because the spatial resolution of the 
estimation production in one municipality may include 
soybean from other municipalities.

In Brazil, the state of Mato Grosso is an important 
region for national and global agricultural production, 
requiring an efficient crop monitoring system. A 
remote sensing-based model could potentially promote 
important improvements for crop production forecasts 
in the area. In this context, remote sensing data should 
play a significant role in obtaining accurate spatialized 
and near real-time agricultural statistics. However, 
intense cloud cover during key identification periods 
usually hinders the operational implementation of 
Landsat-based methodologies that provide agricultural 
statistics of summer crops (Sano et al., 2007).

The difficulty related to cloud cover may be overcome 
by using imagery from the Earth observing system-
moderate resolution imaging spectroradiometer (EOS-
Modis) sensor aboard the Terra satellite, for crop cycle 
monitoring, primary productivity, and biophysical 
parameter estimates (Melo et al., 2008). The Modis 
sensor provides an adequate imaging configuration 
for crop monitoring due to its almost-daily revisit 
rate combined with a reasonable spatial resolution 
of 250 m, which is considered adequate for mapping 
large-scale agricultural fields (Lobell & Asner, 2004). 
Moreover, it has a good geometric quality that allows 
for time series and crop development analyses (Justice 
et al., 2002).

Different methodologies proposed by previous 
studies showed that the Modis medium spatial 

resolution is capable of revealing cropland presence 
over large areas (Morton et al., 2006; Pittman et al., 
2010; Arvor et al., 2011; Gusso et al., 2014). However, 
most of the published methods were designed to 
analyze specific use cases – a specific crop, a few 
crop years, or a restricted area, for example – and are 
not always valid under highly variable and extreme 
agrometeorological conditions within a routine and 
systematic crop forecasting system (Gusso et al., 
2012).

In order to determine agricultural production, it is 
necessary to combine crop area and yield estimates. 
Yield estimate models usually consider agricultural 
practices, weather, and climatological conditions, 
especially rainfall (Fontana et al., 2002; Ferreira & 
Rao, 2011), as the predominant physically-driven 
conditions for the agricultural cycle modelling 
(Melo et al., 2008; Cardoso et al., 2011). However, 
the aggregation of agrometeorological components, 
even with low spatial resolution, results in increased 
complexity or substantial errors in the models (Assad 
et al., 2007; Sims et al., 2008), leading to low predictive 
power for support. Furthermore, meteorological data 
are often not available at the same time or at the same 
spatial scale as the remote sensing imagery (Sims et 
al., 2008). In this way, simplified models based on 
the spectral behavior of crop cycles can be a good 
alternative to support decision making prior to crop 
harvest (Mercante et al., 2010; Gusso et al., 2013).

Gusso et al. (2013) used an associative transfer 
property to show that the mathematical relationship 
between a crop’s vigor profile and grain production can 
be used to obtain the spatial distribution of the enhanced 
vegetation index (EVI) on an intra-annual basis. This 
assumption is based on the fact that vegetation indices 
are correlated with soybean yield because they are 
mainly associated with biomass evolution (Fontana 
et al., 2002; Melo et al., 2008). On this premises, 
Gusso et al. (2013) developed a coupled model (CM) 
that combines the Modis crop detection algorithm 
(MCDA) map with the resulting Modis productivity 
detection model (MPDM) to estimate soybean yield 
and production; however, it is still not clear to which 
spatial and temporal extent these physically-driven 
conditions can be sensitive to different management 
practices and climate conditions.

The objective of this work was to evaluate the 
reliability of the physiological meaning of the enhanced 
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vegetation index (EVI) data for the development of a 
remote sensing-based procedure to estimate soybean 
production prior to crop harvest.

Materials and Methods

The experiment was conducted in the state of Mato 
Grosso, Brazil (between 7° and 19°S; and 50° and 
60°W), where the sowing period for soybean lasts from 
mid-September to early November, and the prevailing 
management practice is no-tillage farming (Figure 1). 
The climate is tropical, super humid, Af, according to 
Köppen, with dry periods during the winter season. 
The average annual rainfall is 1,610 mm, as registered 
by Instituto Nacional de Meteorologia (Inmet, 2009), 
and the annual rainfall ranges from 1,200 to 2,000 mm 
in the soybean crop areas (Arvor et al., 2012).

To accurately adjust and calibrate the 
parameterization for a reliable representation of the 

primary physical conditions and management practices 
found in the state of Mato Grosso, different levels of 
information and two data types were used. However, 
the dynamic-induced changes were modulated into a 
procedure for which EVI is the only input data for the 
coupled model (CM) approach.

The first type of data was acquired from the shuttle 
radar topography mission (SRTM) at 90-m spatial 
resolution (Rabus et al., 2003), which were used to 
generate a slope map to exclude improper areas for 
mechanization (slope >12%).

The second type was obtained from Inmet (2009) 
and included annual rainfall data from 2000 to 2011 and 
30 day-accumulated rainfall from 12 meteorological 
stations, covering the period from September to 
February, during these same years. The objective was 
to refine the period of initial sowing and evaluate total 
rainfall during crop development.

Figure 1. Location of the state of Mato Grosso in Brazil (A) and of the visited farms (B).
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Modis EVI data (MOD13Q1 product, collection 5) 
covered all of the state of Mato Grosso (six image tiles: 
H11V09, H11V10, H12V09, H12V10, H13V09, and 
H13V10) for the 2000–2011 study period. The Modis 
images and its products were obtained from National 
Aeronautics and Space Administration (Nasa, 2009).

The EVI formulation is 2.5 × (Nir - Red) / (Nir 
+ 6 × Red - 7.5 × Blue + 1), in which Nir, Red, and Blue 
are the atmospherically or partially-atmospherically 
corrected surface reflectances of the near-infrared, red, 
and blue bands, respectively (Huete et al., 2002). In the 
present study, EVI is also considered as an indicator of 
water stress (Sims et al., 2008).

Regarding the different information levels, the 
relationship between EVI and soybean yield was 
analyzed to detect the scale effect range. Smoothed 
EVI values were obtained by averaging two time 
windows from the maximum vegetation development 
stage, which ranged from 337–017 and 353–033 days 
of the year (DOY), and were compared with 
soybean yield averages at a regional scale, showing a 
logarithmic relationship. For this purpose, a log-based 
mathematical rule, such as y = a × ln(x) + b, fits better 

to the contour conditions in the relationship between 
EVI and soybean yield. In this way, the area calculated 
below the crop profile graph, described as a function 
of EVI and above zero is proportional to the maximum 
crop production so that different crop development 
conditions sweep out different areas during equal time 
windows in the same period (Gusso et al., 2013).

The validation of the production estimates from the 
CM was, therefore, carried out at three different spatial 
scales: state, municipality, and local. At the state 
scale, these estimates were compared with the annual 
soybean agricultural statistics from Conab and IBGE, 
as already mentioned (Figure 2). At the municipality 
scale, only the estimates from IBGE (2013) were 
available for comparison. Finally, at the local scale, 
validation data on yields were obtained at the crop 
level from two harvests in 2005 and 2006 during a 
field campaign across a total of 76 farms visited and 
mapped in 13 municipalities, representing the two 
main agricultural regions in central and western Mato 
Grosso, along the BR-163 road and on the plateau 
Chapada dos Parecis, respectively (Figure 1, Arvor 
et al., 2011). The validation was based on information 

Figure 2. Percent deviation in the comparison of the total production estimates obtained from Companhia Nacional de 
Abastecimento (Conab), Instituto Brasileiro de Geografia e Estatística (IBGE), with the coupled model (CM) for each crop 
year, from 2001 to 2011.
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obtained for 422 sites – 211 in 2005 and 211 in 2006 –, 
with acreages between 14 and 569 ha.

EVI data was also used to parameterize the profile 
of the crop development cycle related to canopy vigor. 
This profile was considered as the complete cycle 
of the physiological stages of the vegetation profile, 
which is representative of the total agrometeorological 
conditions and management practices acting during 
the crop development profile.

Four physical vegetation concepts were adopted in 
the present study from Gusso et al. (2013), as follows. 
First, the complete crop development profile from the 
EVI is representative of the canopy vigor status of a 
particular crop. In this case, the physiological meaning 
stands for the contour conditions that associate crop 
canopy vigor with production.

Second, that the area calculated below the crop 
profile graph (described as a function of EVI) and above 
zero is proportional to the maximum crop production, 
so that different crop development conditions sweep 
out different graph areas during equal time windows at 
the same time (Gusso et al., 2013). This shows that the 
calculated graph area is correlated with the maximum 
crop yield possible in a specific crop year of a specific 
region.

Third, that the predominant crop development 
calendar in the state of Mato Grosso reaches its 
maximum within a fixed window period, which is 
covered by the MOD13Q1 product from 337 to 033 
DOY (Gusso et al., 2013).

Lastly, that once the crop profile reaches its 
maximum and flattens off, the maximum EVI value of 
the current crop is calculated by averaging it in a fixed 
time window that covers the maximum vegetation 
development, as previously described. This period of 
time covers the stages from flowering to the beginning 
of grain filling and is determined using a knowledge-
driven approach. Four consecutive EVI images from 
the maximum plant growth were used to obtain an 
integrated EVI, which is referred to as the maxEVI 
window (Gusso et al., 2013).

It should be noted that the MCDA map coupled 
to the resulting MPDM map only considers the EVI 
values associated with the soybean crop area selected 
from the MCDA. Therefore, pixels that fall out from 
the soybean crop areas are tagged as zero yield. Based 
on this approach, parameterizations were performed 
during the development cycle of the culture, which 

are best represented by images of the vegetation index 
(Gusso et al., 2012, 2013). In this case, soybean yield 
estimation can be provided immediately after a set of 
EVI images becomes available in early February in the 
state of Mato Grosso.

The parameters defined in the CM for crop 
production estimates are constant in the mathematical 
code, independently of the soybean crop development 
or multiyear dynamics in the state of Mato Grosso. 
The MCDA and MPDM processes were coupled to 
generate results at a pixel basis, based solely on the 
EVI images as input parameters. The results were 
described with a single nonlinear mathematical 
function relating the integrated value of the EVI to 
yield at different scales, using a log-based mathematical 
rule, in which parameters a and b were determined 
for the state of Mato Grosso, through the equation:  
yield = a × (maxEVI) + b, in which a is the variation rate 
parameter 7,000 kg ha-1; b is the positive dimensionless 
constant value of 5,100 kg ha-1, associated with the 
lower yield threshold; and maxEVI is the dimensionless 
value of the EVI obtained from the time window of 
maximum plant growth.

The production estimates were obtained by 
multiplying yield by pixel area (a pixel of 250 m is 
6.25 ha), using the equation: CM (tons) = MCDA 
(hectare) × MPDM (tons per hectare).

The soybean production estimates obtained from 
the CM for the state of Mato Grosso were compared 
with the official ones from IBGE and Conab, at the 
state and municipality levels, from 2001 to 2011. 
Spatially interpolated maps were generated from the 
municipal yield data acquired from IBGE and the 
CM, then allocated into municipal centroids. A total 
of 141 municipalities was analyzed for each crop year, 
and the averages were obtained for the period from 
2001 to 2011 (Figure 1).

Results and Discussion

The slope coefficient values close to 1 indicates a 
slight tendency of the CM to underestimate the 
production for municipalities with the highest 
production (Figure 3). However, the obtained coefficient 
of determination (R2) of 0.96 (p≤0.01) indicated that 
the model adheres to official statistics (Figures 3 and 
4). The CM yield estimate was of 2,965 kg ha-1 in 
2006, while the averages reported by IBGE and Conab 
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were of 2,678 and 2,695 kg ha-1, respectively. This 
result suggests that the CM is probably detecting inner 
trends and variations given by intra-municipality crop 
areas that the subjective and non-spatialized methods 
cannot. Furthermore, the 2005, 2006, and 2007 crop 
years were quite atypical for producers in the state of 
Mato Grosso due to adverse economic factors (Arvor et 
al., 2009, 2012), which actually generates uncertainties 
in non-spatialized methods.

The major soybean producer in the state of Mato 
Grosso is the municipality of Sorriso, as shown by 
the nine points above 1.5 million tons representative 
of soybean production, with more than 1,482,000 tons 
(IBGE, 2013). The root mean square deviation was 
48,878 tons for all aggregated data. The dashed 
lines show 95% of yield occurrences with Pearson’s 
correlation coefficient of 0.98, indicating that the CM 
estimates are consistent (Figure 3).

The obtained R2 between the production estimates 
from the CM and from field data acquired from Arvor 
et al. (2011) was 0.87; Pearson’s correlation coefficient 
was 0.93; and the slope coefficient was 0.96 (Figure 4). 
A slight tendency for the underestimation of the 
CM was also observed, which is in alignment with 
municipality-level results.

The forecasts generated by the CM adhere to data 
from the official agencies Conab and IBGE, with 
differences ranging from as low as +2.22% (Conab to 
CM) and -1.13% (IBGE to CM) in 2004, to as high as 
-6.75% (Conab to CM) and -12.93% (IBGE to CM) in 
2006 (Figure 3). At the local level, yields are affected 
by local factors such as agricultural practices, which 
are smoothed at the municipal level and even more so at 
the state level. The difference observed between IBGE 
and the CM in 2006 coincides with reported tensions, 
including low prices, high costs, soybean disease in the 
fields, climatic variability, and environmental issues, 
which led to a decrease in total area and production 
between 2004 and 2007 (Arvor et al., 2009).

The overall results obtained from the CM approach 
show that the estimations of this model adhere to the 
spatial variability of soybean yield (Figure 5). In most 
cropped areas, the predominant yield values found were 
between 3,000 kg ha-1, in light blue, and 3,700 kg ha-1, 
in dark blue, especially in the southwestern region 
of the state of Mato Grosso. However, the yield 
values decreased to approximately 2,700 kg ha-1 in 
the central-western areas, in yellow, and to below 
2,000 kg ha-1, mainly towards the agricultural frontiers 
in the northeastern region of the state, in red. It should 
be pointed out that the CM is less affected by complex 
and time-consuming analytical methodologies related 

Figure 3. Scatter plot comparing production estimates 
for the municipalities in the state of Mato Grosso, Brazil, 
obtained from the coupled model (CM) and Instituto 
Brasileiro de Geografia e Estatística (IBGE), from 2001 to 
2011.

Figure 4. Scatterplot comparing soybean (Glycine max) 
production estimates obtained from field campaign data 
and the coupled model (CM) output in the 2005 and 2006 
crop years.
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to image interpretation. Additionally, a CM map 
can be released at the 250-m Modis pixel resolution 
(Figure 5). However, fine adjustments of the model 
to regional conditions are still crucial. Liu & Kogan 
(2002) evaluated soybean cultivation in several regions 
of Brazil, using the vegetation condition index, from 
1985 to 1998, and found R2=0.71 for the state of 
Mato Grosso. Assad et al. (2007) used a different 
source of data for a forecasting system in the same 
state and obtained Pearson’s correlation coefficient of 
0.95 between data from the yield forecasting model 
and from Conab; however, the authors considered 
official area estimates from IBGE for the production 
computation. Therefore, the CM approach, adjusted 
to the prevailing physiological meaning of vegetation 
cover conditions in Mato Grosso, led to adequate 
production forecasts at the crop level, as expected. Most 
of this result is due to the accurate crop area estimation 

by the MCDA, since the output values that were 
obtained by applying this approach are representative 
of the prevailing physically-driven conditions of 
crop vegetative development through time. Similarly, 
the MCDA was used to generate accurate results in 
two different ecoregions, including the states of Rio 
Grande do Sul (Gusso et al., 2012) and Mato Grosso 
(Gusso et al., 2014), characterized by different crop 
management systems.

Implementing operational crop yield forecasts 
before crop harvests remains a challenge at the regional 
level because the forecast models operate at different 
spatial scales. These regional conditions, including 
management practices, both logistic and economic, 
induce alterations in yield and their combined effect 
impacts the CM parameters. As expected, although a 
physiological meaning of the EVI was related to yield 
and production forecasts, such results also suggest that 

Figure 5. Soybean (Glycine max) yield distribution mask from the coupled model (CM) estimation in the 2011 crop year 
in: A, the municipality of Sinop and adjacent municipalities; and B, the municipality of Primavera do Leste and adjacent 
municipalities, in the state of Mato Grosso, Brazil.
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the annual variability in the index is not only a function 
of crop vegetation type and climate but also of regional 
management practices. The relevance of local data for 
fine adjustment due to local management practices is 
also an important feature of the CM. In the present 
study, for modelling development of the state of Mato 
Grosso, two different maximum EVI windows were 
used to estimate soybean yield from the maximum 
development stage, whereas, for the modelling of 
the prevailing vegetation cover conditions of another 
ecoregion, in the state of Rio Grande do Sul (Gusso 
et al., 2013), for example, only one maximum EVI 
window was needed.

Conclusions

1. The physiological meaning of the enhanced 
vegetation index profile can objectively explain 
soybean (Glycine max) yield fluctuations through 
time at different spatial scales and under a variety of 
remote-sensing conditions.

2. The proposed methodology is able to estimate 
soybean crop production prior to soybean crop harvest.
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