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Abstract – The objective of this work was to evaluate the relationship between different remote sensing 
data, derived from satellite images, and interrill soil losses obtained in the field by using a portable rainfall 
simulator. The study was carried out in an area of a hydrographic basin, located in Médio Paraíba do Sul, 
in the state of Rio de Janeiro – one of the regions most affected by water erosion in Brazil. Evaluations 
were performed for different vegetation indices (NDVI, Savi, EVI, and EVI2) and fraction images (FI), 
derived from linear spectral mixture analysis (LSMA), obtained from RapidEye, Sentinel2A, and Landsat 
8 OLI images. Vegetation indices are more adequate to predict soil loss than FI, highlighting EVI2, whose 
exponential model showed R2 of 0.74. The best prediction models are generated from the RapidEye image, 
which shows the highest spatial resolution among the sensors evaluated.

Index terms: linear spectral mixing analysis, rainfall simulator, vegetation indices.

Relação entre dados de sensoriamento remoto e perdas 
de solo em entressulcos observadas em campo

Resumo – O objetivo deste trabalho foi avaliar a relação entre diferentes dados de sensoriamento remoto, 
derivados de imagens de satélite, e perdas de solo em entressulcos obtidas em campo por meio de um simulador 
de chuvas portátil. O estudo foi realizado em uma microbacia hidrográfica localizada no Médio Paraíba 
do Sul, no Estado do Rio de Janeiro – uma das regiões mais afetadas por erosão hídrica no Brasil. Foram 
avaliados diferentes índices de vegetação (NDVI, Savi, EVI e EVI2) e frações de componentes puros (FCP), 
derivados de modelos lineares de mistura espectral (MLME), obtidos de imagens RapidEye, Sentinel2A e 
Landsat 8 OLI. Os índices de vegetação são mais adequados à predição da perda de solo do que as FCP, com 
destaque para o EVI2, cujo modelo exponencial apresentou R2 de 0,74. Os melhores modelos de predição são 
gerados a partir da imagem RapidEye, que apresenta maior resolução espacial entre os sensores avaliados.

Termos para indexação: modelos lineares de mistura espectral, simulador de chuva, índices de vegetação.

Introduction

In agricultural lands of tropical regions, water 
erosion contributes most to soil degradation, which is 
facilitated and accelerated by man, through inadequate 
agricultural management practices and exploitation of 
natural resources (Mello et al., 2013).

The Paraíba do Sul river basin is one of the Brazilian 
regions most influenced by water erosion, since more 
than 20% of its area (one million hectares) is in high 
or very high vulnerability to erosion (Machado et al., 
2008). The Médio Paraíba do Sul region is considered 
the most critical one of the entire basin, considering 
its history of occupation since the coffee cycle in the 

19th century, followed by an extensive cattle pasture 
(Machado et al., 2010).

Temporal and spatial information on soil loss are 
used as tools to assist soil and water conservation 
programs, and can be generated by erosion prediction 
models which commonly use remote sensing 
techniques to represent the vegetation cover (Renard 
et al., 1997; De Jong et al., 1999; Hazarika & Honda, 
2001). The vegetation cover has a great influence on the 
erosive process, as it protects the soil from the rainfall 
impact, besides influencing the surface roughness 
and the soil structure, by the contribution of organic 
carbon, increasing the biological activity, as well as 
the stability of aggregates, directly affecting the rate 
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of water infiltration and, consequently, the runoff and 
erosion.

Remote sensing data can be used in different ways 
in erosion prediction models. Many studies are based 
on the mapping of different soil cover classes, which 
are related to a degree of susceptibility to erosion and 
then used, for instance, to estimate the soil cover C 
factor of the revised universal soil loss equation (Rusle) 
(Ganasri & Ramesh, 2016; Gelagay & Minale, 2016). 
Furthermore, indices that correlate with vegetation 
cover are also used such as the normalized difference 
vegetation index (NDVI) (Rouse et al., 1974) which is 
the most used in erosion prediction models.

The NDVI has been used for the estimation of Rusle 
factor C (van der Knijff et al., 1999; Ashiagbor et al., 
2013; Durigon et al., 2014; Aiello et al., 2015), and also 
for other erosion prediction models such as the E30 
(Hazarika & Honda, 2001) and Semmed (soil erosion 
model for Mediterranean regions) (De Jong et al., 
1999). In addition to vegetation indices, the fraction 
images (FI) generated by linear spectral mixture 
analysis (LSMA) have been used to obtain the Rusle 
C factor (Asis & Omasa, 2007) and to develop erosion 
indices (Asis et al., 2008).

Despite the wide use of these tools, remote sensing 
data have not been correlated with soil losses measured 
in situ.

The objective of this work was to evaluate the 
relationship between different remote sensing data, 
derived from satellite images, and interrill soil losses 
obtained in the field by using a portable rainfall 
simulator.

Materials and Methods

The study was carried out in the Médio Paraíba do 
Sul region (22º41'35"S, 43º59'24"W), in an area of the 
hydrographic basin of Cachimbal stream, inside the 
Instituto Federal de Educação e Tecnologia do Rio 
de Janeiro, Nilo Peçanha Campus (IFRJ), located in 
the municipality of Pinheiral, Rio de Janeiro, Brazil 
(Figure 1). The climate of the region, according to 
the Köppen-Geiger’s classification, is Cwa – tropical 
climate of dry winter and rainy summer, with average 
maximum and minimum temperatures of 30.9 and 
16.8ºC, respectively. The annual precipitation varies 
between 1,300 and 1,500 mm, with water surplus of 

100 to 150 mm monthly from December to March, and 
water deficiency from July to September.

The region is at an altitude ranging from 360 m to 
720 m, and shows several forms of relief with different 
degrees of dissection, predominating slopes with 
varied gradients (72.0%), few areas of flattened tops 
(5.7%), and narrow floodplains (22.3%) in the basin’s 
structural valleys near the banks of its main channel 
(Oliveira, 1998).

This region is inserted in an area of ecological 
domain of the Atlantic Forest, where the original 
vegetation is a Submontane Semidecidual Seasonal 
Forest, which is typical of altitude zones between 300 
and 800 m. The vegetation is currently dominated by 
unmanaged, planted, and spontaneous pastures, which 
occur at different degradation stages, level of use, or 
abandonment, and forests at different successional 
stages.

The commonly encountered soil classes, according 
to SiBCS (Santos et al., 2013) and World… (2015) are 
the Argissolos (Acrisols), Cambissolos (Cambisols) 
in the hills and slopes, Cambissolos Flúvicos and 
Neossolos Flúvicos (Fluvisols) in the lowland areas 
near the Cachimbal and Paraíba do Sul rivers, and the 
Gleissolos Háplicos (Gleysols), in the poorly drained 
areas.

The interrill soil loss was quantified from July to 
September 2015 through a portable rainfall simulator 
(Alves Sobrinho et al., 2008), which operates with two 
parallel Veejet 80.150 nozzles, positioned at 2.30 m 
above the soil surface, and has an experimental useful 
area (plot) of 0.70 m2. The plots were delimited by a 
rectangular shaped gutter, built in galvanized steel 
sheets that allowed the collection of the drained water 
volume (runoff). According to these authors, rainfall 
simulations on areas smaller than 1.5 m2 have been 
used to study surface sealing, interrill, and splash 
erosion, but cannot be used for studying processes that 
require larger areas as is the case with rill erosion.

The tests with rain simulation were performed in 
71 points in the study area (Figure 1), which were 
selected using the ACDC function (association/
correlation measures, and the marginal distribution 
of covariates), using the package Spassan (Samuel-
Rosa, 2016) on R software, adopting the following as 
covariables: NDVI of a RapidEye image of 06/06/2014; 
a slope map derived from a digital elevation model 
(DEM) of 5 m of spatial resolution; and a map of 
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Figure 1. Study area and simulated rainfall sampling points, in the Cachimbal River basin, in the state of Rio 
de Janeiro, Brazil.
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soil classes of 1:10,000 scale. The choice of points 
was performed with the purpose of representing the 
variability of attributes (covariables) that influence 
the interril soil loss (vegetation cover, relief, and soil 
classes). Part of the micro basin area out of the IFRJ 
campus could not be used. Therefore, 41 tests were 
carried out at points outlined by the ACDC, and the 
other points were delineated through the expertise of 
the researcher’s team.

After the definition of the points, rainfall intensity 
at 60 mm per hour was applied for one hour, counted 
from the beginning of the runoff. Twenty-four hours 
before each test, and with the objective to show more 
favorable conditions to the occurrence of surface 
runoff, the plots received a pre-wetting, unifying the 
humidity conditions before the simulated rainfall 
application (Almeida et al., 2016). This procedure was 
performed by adding water gently and homogeneously 
in the plot, through a watering can, until the occurrence 
of runoff.

The interrill soil loss was quantified by the difference 
between the water depth applied by the simulator and 
the drained water depth, collected during 1 min for 
every 5 min of testing. The drained material was taken 
to the drying oven and, after drying, the soil mass per 
minute was obtained, and soil loss for the entire one 
hour rain was calculated.

Remote sensing data were derived from RapidEye, 
Sentinel 2A, and Landsat 8 OLI images, in dates 
near the period of execution of field tests (Table 1). 
The images were subjected to atmospheric correction 
and were transformed to surface reflectance using the 
6S (second-simulation of satellite signal in the solar 
spectrum) model for RapidEye (Antunes et al., 2014) 
and Landsat 8 OLI images (Bonansea et al., 2015), 
and sen2cor software implemented in the Sentinel 

application platform (SNAP) (Müller-Wilm, 2016) for 
the Sentinel 2A image.

The vegetation indices derived from each image, 
such as the NDVI, the soil-adjusted vegetation 
index (Savi) (Huete, 1998), the enhanced vegetation 
index (EVI) (Huete et al., 1997), and the EVI 2 
(Jiang et al., 2008), which are below described: 

NDVI NIR RED NIR RED= − +ρ ρ ρ ρ

Savi L LNIR RED NIR RED= +( ) −( ) + +1 ρ ρ ρ ρ

EVI C C LNIR RED NIR RED BLUE= − − + +( )2 5 1 2. ρ ρ ρ ρ ρ

EVI NIR RED NIR RED= − + +( )2 5 2 4 1. .ρ ρ ρ ρ

in which: ρNIR is the near-infrared reflectance; ρRED is 
the red reflectance; ρBLUE is the blue reflectance; L is 
the soil adjustment factor, which is 0.5 for Savi and 7.5 
for EVI; C1 = 1.0; and C2 = 6.0.

Fraction images (FI) were crated through linear 
spectral mixture analysis (LSMA). The LSMA 
is an alternative to determine the fractions of 
the components within an impure (mixed) pixel. 
An important assumption of the LSMA is that the 
spectral signature of a given pixel is the weighted 
proportional linear combination of the “end 
member” spectra (Shimabukuro & Smith, 1991). 
Mathematically, the LSMA model is expressed as:

Ri f r and f fj ij i
j

N

j j
j

N

= + = ≤ ≤
= =

∑ ∑ε
1 1

1 0 1  ; ,

in which: i is the number of spectral bands used; j=1, 
..., N is the number of “end members”; ri is the spectral 
reflectance of the mixed pixel in band i; fj is the 
fraction of the pixel area covered by the “end member” 
j; rij represents the reflectance of the “end member” 
j in the band i; and εi is the residual error in band i. 
Besides, two constraints on the solution of values fj are 
maintained: the fractions in all the FI add up to one; 
and each FI must range between 0 and 1. The input 
to the model is given by the spectral reflectance (Ri) 
and the “end member” spectra (rij). A single solution is 
possible, since the number of “end members” is equal 
to the number of spectral bands plus one. The residual 
error is the difference between the measured and 
modeled spectrum in each band. Residues in all bands 

Table 1. Characteristics of tested satellite images.

Image Data Number  
of bands

Spatial resolution(1) 

(m)
License

RapidEye 07/12/2015  5 6.5 resampled for 5 Private(2)

Sentinel 2A 08/01/2015 13 10 Free
Landsat 8 OLI 07/14/2015 13 30 Free

(1)Spatial resolution of the bands of interest used for vegetation monitoring. 
(2)RapidEye images until 2014 can be obtained for free, for research 
purposes, through the Ministério do Meio Ambiente (MMA) of Brazil.
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for each pixel in the image can be calculated to give 
a root mean square error (RMSE), which is useful in 
assessing the validity of selected “end members”.

“End members” of abundant vegetation, bare soil, 
and shade were used; the first two ones were selected 
because they represent factors that interfere in the 
erosive process (Asis & Omasa, 2007), and the third 
one because it represents a common feature in the 
study area. This procedure resulted in the definition of 
the three FI related to vegetation (FIveg), bare soil (FIbs), 
and shade (FIsh).

The models were created in a free version of the 
software CurveExpert 1.4 (Hyams, 2010), and the 
comparison between the different remote sensing data 
and also between different sensors were done through 
the coefficients of determination R2 and RMSE 
obtained between SL and remote sensing data.

Results and Discussion

The average SL obtained in the study area was 
74.4 kg ha-1, with values varying from 0.00 to 
618.0 kg ha-1 (Table 2). The mean soil loss values and 
the number of simulated rainfall tests for the different 
types of cover are also presented.

The highest average SLs were found in the degraded 
pasture class (267.0 kg ha-1), followed by the classes: 
pasture (66.7 kg ha-1), fallow area (47.4 kg ha-1), 
unmanaged pasture (34.8 kg ha-1), and forest 
(15.2 kg ha-1) (Table 2). Studies with natural rainfall 
have shown similar results where the largest SL 
occurs in degraded pastures and exposed soil areas, 
while smaller SLs are found in natural systems (native 
forests) (Martins et al., 2003; Pires et al., 2006).

Degraded pastures are in an advanced stage of 
degradation, showing at least erosion in furrows and 

burned areas (without vegetation cover). These soils, 
deprived of vegetal protection and compacted by cattle 
trampling, are easily impacted by the rain drops, which 
increases the detachment of particles and the sealing 
of the soil surface, reduces water infiltration capacity, 
and increases surface runoff, resulting in larger SLs. 
The pasture areas showed SL average four times 
as low as that of the degraded pastures. These areas 
have relatively homogeneous vegetation cover, but are 
commonly considered areas from moderate to strong 
laminar erosion. According to Rocha Junior et al. 
(2017), conventional and burned pasture managements, 
usually adopted in the Atlantic rainforest biome, causes 
high losses of sediment, organic carbon, and nutrients, 
in comparison to fertilized and well managed pasture 
systems.

Fallow areas, which showed the third largest soil loss 
(47.4 kg ha-1), were isolated in order to be reforested, 
but without the implantation of forest species. They 
are typically covered by Panicum maximum grass 
and frequently suffer from burnings during the dry 
seasons of the year, which does not allow of the natural 
regeneration of forests, and favors the continuity of the 
soil degradation process.

The unmanaged pasture areas showed the second 
lowest soil loss (34.8 kg ha-1). They are composed of 
plant species of low interest for cattle, promoting less 
trampling, also showing the development of varied 
vegetal species with different sizes and growth habits 
that consequently protect the soil even more.

Although the tests with simulated rainfall were 
performed under the canopy, the forest areas showed 
the lowest SL average (15.2 kg ha-1) among the 
coverages. This effect caused by the vegetation cover 
and, in this case, mainly by the litter in the reduction of 
water erosion in natural systems (forests) is related to 
its capacity to minimize the impact of the rain drops, 
and to soften the runoff, besides positively influencing 
the soil structure through the input of organic matter 
and biological activity (Martins et al., 2003; Pires 
et al., 2006).

The SL values show great variation within each soil 
cover class, and can be explained by the variability of 
other attributes that may influence the erosive process, 
such as slope (Wang et al., 2017) and soil erodibility, 
which is based on properties of the soil, such as texture 
and structure, among others (Vaezi et al., 2016).

Table 2. Average, minimum, and maximum soil losses, and 
number of tests per soil cover class.

Soil cover class Soil loss (kg ha-1) Tests per soil 
cover class Average Maximum Minimum

Forest 15.2 41.2 0.0 13
Unmanaged pasture 34.8 97.8 0.0 12
Fallow area 47.4 102.0 0.0 11
Pasture 66.7 158.8 20.88 26
Degraded pasture 267.0 618.0 99.5 9
Total 74.4 618.0 0.00 71
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The mean, minimum, and maximum values of 
vegetation indices, and fraction images (FI) derived 
from RapidEye image for the different coverages are 
presented (Table 3). In general, the highest values of 
NDVI, Savi, EVI, EVI2, and FIveg are found in forests, 
and the lowest ones in the degraded pastures. The 
opposite is found for FIbs. These results are consistent, 
as higher values of vegetation index and FIveg are 
related to a denser vegetation cover (Rouse et al., 1974; 
Huete et al., 1997; Jiang et al., 2008), while high-FIbs 
values are related to exposed soils (Asis & Omasa, 
2007). The results show a great difference between 
the data values for forest and degraded pastures, but 
show similar values for unmanaged pasture, fallow, 
and pasture.

The models generated with vegetation indices 
derived from the RapidEye image showed the best fit 
with SL. The model derived from EVI2 showed the 
highest R2 (0.74) and lower RMSE (54.15 kg ha-1), 

followed by the respective R2 and RMSE values of 
EVI (0.72, 56.37 kg ha-1), Savi (0.70, 57.63 kg ha-1), 
and NDVI (0.66, 62.41 kg ha-1) (Table 4 and Figure 2). 
Savi, EVI, and EVI2 are modifications of the NDVI. 
Savi has a soil correction factor. However, EVI has the 
soil correction factor and adopts the blue band for the 
correction of the red band for atmospheric scattering 
by aerosols, and, despite being a modification of EVI, 
EVI2 does not use the blue band. Improved vegetation 
indices (EVI and EVI2) show better responses to 
vegetation (Huete et al., 1997; Jiang et al., 2008) and, 
therefore, a greater correlation potential with soil loss. 
Among the FIs, the FIveg showed a better fit with the SL, 
with R2 of 0.64 and RMSE of 54.15 kg ha-1, followed 
by the bare soil fraction image (FIbs). When testing FIs 
and NDVI for Rusle factor C prediction, Asis & Omasa 
(2007) found better adjustments for FIveg and FIbs, in 

Table 3. Average, minimum, and maximum values of 
remote sensing data derived from RapidEye image of the 
main soil cover classes in the study area.

Data Statistic Soil cover classes
Forest UMP FA Pasture DP

NDVI
Average 0.84 0.75 0.69 0.69 0.49

Maximum 0.90 0.85 0.84 0.85 0.63
Minimum 0.80 0.62 0.61 0.44 0.33

Savi
Average 0.43 0.39 0.39 0.38 0.28

Maximum 0.52 0.47 0.56 0.61 0.38
Minimum 0.35 0.31 0.30 0.29 0.20

EVI 
Average 0.41 0.36 0.36 0.35 0.25

Maximum 0.52 0.45 0.57 0.55 0.35
Minimum 0.32 0.28 0.28 0.24 0.17

EVI 2
Average 0.42 0.38 0.38 0.37 0.27

Maximum 0.51 0.48 0.59 0.51 0.37
Minimum 0.35 0.30 0.29 0.27 0.19

FIsh

Average 0.47 0.47 0.33 0.43 0.43
Maximum 0.65 0.65 0.60 0.58 0.56
Minimum 0.29 0.17 0.10 0.06 0.26

FIveg

Average 0.52 0.46 0.49 0.45 0.30
Maximum 0.71 0.60 0.87 0.85 0.47
Minimum 0.38 0.32 0.31 0.27 0.16

FIbs

Average 0.02 0.07 0.16 0.17 0.26
Maximum 0.06 0.19 0.26 0.32 0.39
Minimum 0.00 0.02 0.01 0.07 0.14

UMP, unmanaged pasture; FA, fallow area; DP, degraded pasture. 

Table 4. Soil loss prediction models based on vegetation 
indices and fraction images derived from RapidEye, 
Sentinel 2A, and Landsat 8 OLI images.

Remote sensing 
data

Model R2 RMSE 
(kg ha-1)

RapidEye
NDVI SL = 14.473NDVI-3.335 0.66 62.41
Savi SL = 0.762Savi-4.201 0.70 57.63
EVI SL = 0.869EVI-3.739 0.72 56.37
EVI 2 SL = 0.590EVI2-4.229 0.74 54.15
FIsh SL = 99.675FIsh

0.309 0.01 105.16
FIveg SL = 6.527FIveg

-2.503 0.64 62.72
FIbs SL = 1192.513FIbs

1.468 0.41 82.16
Sentinel 2A

NDVI SL = 177.473 - 182.573NDVI 0.07 102.17
Savi SL = -8.280 - 69.708lnSavi 0.03 104.07
EVI SL = 7.580 - 55.441lnEVI 0.03 104.41
EVI2 SL = -65.944 - 6.595lnEVI2 0.03 103.94
FIsh SL = 93.185 - 45.270FIsh 0.00 105.58
FIveg SL = 28.262 - 48.419FIveg 0.03 104.31
FIbs SL = 37.251 - 209.527FIbs 0.05 102.87

Landsat8 OLI
NDVI SL = 211.447 - 163.303NDVI 0.03 103.94
Savi SL = 67.597 + 17.897Savi 0.00 105.75
EVI SL = 73.110 + 3.510EVI 0.00 105.76
EVI2 SL = 72.1771 + 6.115EVI2 0.00 105.76
FIsh SL = 98.271 - 68.557FIsh 0.01 105.19
FIveg SL = 75.959 - 2.687FIveg 0.00 105.76
FIbs SL = 133.355FIbs

-19.711 0.04 103.72

RMSE, root mean square error.
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comparison to NDVI. However, their work sought to 
correlate remote sensing data to Rusle C factor, and 
not to SL directly. As expected, the shadow fraction 
(FIsh) had the lowest correlation with the SL (R2=0.01) 
due to the fact that the shade variable does not have 
any interference in the erosive process.

The low performance of the fraction images can 
be attributed to the mountainous relief of the region, 
which generates many shaded areas that mask 
the most interesting targets, such as bare soil and 
abundant vegetation. Attempts were made to use 
other combinations of “end members”, which does not 
provide satisfactory results, since the RMSEs were 
high, as well as the number of pixels with values below 
0 and above 1 in the FIs.

The mean RMSE of the LSMA-FIs was 0.003, and 
the number of pixels with values below 0 and above 
1 in the FCP was 0.1%, indicating that the choice of 

“end members” was correct (Shimabukuro & Smith, 
1991). It is expected that this method presents better 
results in less mountainous relief areas, where there is 
less shadow effect generated by the relief.

For all variables derived from the RapidEye 
image, exponential models were fitted (Table 4 and 
Figure 2), which seem to represent more adequately 
the relationships of soil loss with remote sensing data. 
According to van der Knijff et al. (1999), exponential 
models are more adequate than linear ones for the 
estimation of Rusle C factor from NDVI, but they 
point out that, at that time, there were no field data 
to support their assertion. The results of this work 
corroborate the assertion of van der Knijff et al. (1999), 
and are in opposition to Aiello et al. (2015), Durigon 
et al. (2014), Ashiagbor et al. (2013) and De Jong et al. 
(1999), who used linear regressions to represent the 
relationships between vegetation indices and soil loss.

Figure 2. Correlation between soil loss and NDVI (A), Savi (B), EVI (C), EVI2 (D), FIsh (E), FIveg (F), and FIbs (G), derived 
from RapidEye image.
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Figure 3. Correlation between NDVI derived from 
RapidEye image and soil loss (SL), for the different soil 
cover classes: UMP, unmanaged pasture; FA, fallow area; 
DP, degraded pasture.

Figure 4. EVI2 derived from three different images: RapidEye (A), Sentinel 2A (B), and Landsat 8 OLI (C) of the Cachimbal 
River basin, in the state of Rio de Janeiro, Brazil.

The relationship between NDVI derived from 
RapidEye image and SL for the different classes 
of coverage can be observed in Figure 3. Soil loss 
measured under forest is associated with high-NDVI 
values, while an opposite effect is observed in areas 

of degraded pastures. The variation of soil loss 
occurs gradually from the forest class to unmanaged 
pasture, fallow, and pasture, and, more abruptly, to the 
degraded pasture class, characterizing the exponential 
form of the response between SL and NDVI (van der 
Knijff et al., 1999).

In general, the best results were obtained from 
the RapidEye image, while the adjustments obtained 
through data derived from the Sentinel 2A image were 
very low and practically null when using data derived 
from Landsat 8 OLI (Table 4). With the decreasing of 
spatial resolution, adjustments of all tested data became 
worse due to the heterogeneity of the soil cover of the 
region, influenced by fragments of different types 
of soil cover of relatively small sizes. In resolution 
images of 30 m (Landsat 8 OLI) and 10 m (Sentinel 
2A), several soil cover fragments may be present in the 
same pixel, resulting in a mixture of the reflectance 
values of the pixel. Thus, the use of spatial resolution 
images of 10 m (Sentinel 2A) and 30 m (Landsat 8 
OLI) were inadequate for the present study where the 
simulated rainfall was applied in a 0.70 m2 plot. The 
difference between the same data (EVI2), derived for 
the different images, shows the larger (RapidEye) and 
lower (Landsat 8 OLI) levels of detail offered by each 
image (Figure 4).
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Conclusions

1. The vegetation indices present better responses 
to soil loss, in comparison to the FIs, especially EVI2.

2. The adjustments of the models indicate that the 
exponential form is the most adequate to represent the 
relationships between remote sensing data and soil 
losses.

3. The best adjustments with soil loss are obtained 
from data derived from RapidEye images, which 
show the highest spatial resolution among the sensors 
evaluated.
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