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Abstract — The objective of this work was to compare the Bayesian approach and the frequentist methods to
estimate means and genetic parameters in soybean multienvironment trials. Fifty-one soybean lines and four
controls were evaluated in a randomized complete block design, in six environments, with three replicates, and
soybean grain yield was determined. The half-normal prior and uniform distributions were used in combination
with parameters obtained from data of 18 genotypes collected in previous and related experiments. The
genotypic values of the genotypes of high- and low-grain yield, clustered by the Bayesian approach, differed
from the means obtained by the frequentist inference. Soybean assessed through the Bayesian approach
showed genetic parameter values of the mixed model (REML/Blup) close to those of the following variables:
mean heritability (h®mg), accuracy of genotype selection (Acgen), coefficient of genetic variation (CVgi%), and
coefficient of environmental variation (CVe%). Therefore, the mixed model methodology and the Bayesian
approach lead to similar results for genetic parameters in multienvironment trials.

Index terms: Glycine max, mathematical modeling, prior distribution in plant breeding.

Abordagem bayesiana, método tradicional e modelos mistos
para experimentos multiambientes na cultura da soja

Resumo — O objetivo deste trabalho foi comparar a abordagem bayesiana e os métodos frequentistas para
estimar as médias e os pardmetros genéticos em experimentos multiambientes de soja. Cinquenta ¢ uma
linhagens de soja e quatro testemunhas foram avaliadas em delineamento de blocos ao acaso, em seis ambientes,
com trés repeti¢des, ¢ a produtividade de graos foi determinada. As distribui¢des “half-normal” a priori e
uniformes foram utilizadas em combinagdo com parametros obtidos de dados de 18 genétipos coletados
em experimentos anteriores ¢ relacionados. Os valores genotipicos de gendtipos com alta e baixa produgéo
de graos, agrupados pela abordagem bayesiana, diferiram das médias obtidas pela inferéncia frequentista.
A soja avaliada pela abordagem bayesiana apresentou valores de pardmetros genéticos de modelos mistos
(REML/Blup) proximos daqueles das seguintes variaveis: herdabilidade média (h’mg), acuracia da sele¢éo
dos genotipos (Acgen), coeficiente de variagdo genético (CVgi%) e coeficiente de variagdo ambiental (CVe%).
Portanto, em experimentos multiambientes, a metodologia de modelos mistos e a abordagem bayesiana
produzem resultados similares de pardmetros genéticos.

Termos para indexagdo: Glycine max, modelagem matematica, distribuicédo a priori no melhoramento genético.

Introduction

Multienvironmental statistical analyses have been
the frequentist methodology adopted in soybean
breeding programs because it loses previous
experimental data information (Omer et al., 2014a).
Therefore, analyses based on the frequentist approach
and on variance components are treated as constants
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that ignore any prior information (Gelman, 20006).
Additionally, based on previous studies, the Bayesian
approach improves the data accuracy and provides
statistic-inference information that is more realistic
(Singh et al., 2015).

The Bayesian approach can be applied to several
fields such as cluster definition analyses (Priolli et
al., 2013), phenological calculation changes (Shen &
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Liu, 2015), and Bayesian network to study the relation
between traits (Valentim et al., 2007). Moreover, to our
knowledge, there are no Bayesian methods available
to find the genotypic values in soybean breeding
programs, so far.

Genotype value prediction for superior materials is
the core problem in plant breeding programs because
an accurate knowledge of the true variance component
value is necessary, which is only found through
adequate methods (Borges et al., 2010). Accordingly,
the Bayesian approach emerged as an alternative
method to estimate the genotype value in the plant
breeding field.

Prior information on phenotypic data is often
available in ongoing crop improvement programs,
and it can be used to estimate the variance component
and the genetic parameters through the application of
the Bayesian methodology. There is no elucidating
Bayesian study based on the use of prior information to
estimate variance components and genetic parameters
to be used in soybean breeding programs.

The objective of this work was to compare the
Bayesian approach and the frequentist methods to
estimate means and genetic parameters in soybean
multienvironment trials.

Materials and Methods

Grain yield (kg ha') of soybean (Glycine max
L. advanced lines was assessed. The experiment
followed a randomized complete block design with
three replicates. The plots consisted of 4 m long rows,
spaced at 0.45 m from each other. For the analyses,
only the two rows in the middle of the plot were taken
into account. A total of 51 soybean lines resulting from
simple, double, quadruple, and octuple crosses, by
using different genitors CD-216 and Conquista (MG-
BR46) cultivars, were tested. Checks were commercial
cultivars Poténcia and V-Max.

The genotypes were assessed in three municipalities
of Sao Paulo state, in different crop seasons: Pindorama
(2013/2014), Jaboticabal (2013/2014, 2014/2015, and
2015/2016), and Piracicaba (2013/2014 and 2014/2015).
The crop seasons and locations were combined
and taken as environments for all the inferences, as
recommended by Omer et al. (2015).

As to the frequentist approach, the grain yield and
multiple environment model, including the environment
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block, the block within environment effect, genotypes
and the genotypes by environment interaction, can
be described as, Yy =H+E;+R,; +G, +(GE)+e
in which: Yy is the observed yield data vector of the
i genotype, in the k™ block of the j™ environment; p
is the general mean; E;is the j™ environment effect;
Ry is the k™ block effect from the j® environment;
G; is the i genotype effect; GE; is the i genotype
and the j™ environment interaction; and &g is the
error. The environments were fixed; the replicate
within environments, genotypes, GE interaction,
and error were the random effect. In general, the
following assumption was taken into consideration:

ijk >

R, ~N(0,03), G, ~ N(0,05), GE; ~ N(0,0¢; ),
and € ~ N(Oa G: ),

in which: N(0, ¢?) is the normal distribution with zero
mean and ¢? variance.

The genotype variance components, genotypes
x environment and rep/environment effects, and
the interaction in the Bayesian approach were
random variables with known parameters in the
prior distribution. These half-normal, uniform, prior
distributions have been studied and recommended to
calculate the variance components, the corresponding
standard deviation components, or the scalar
parameters (Gelman, 2006).

Monte Carlo via Markov chain (MCMC) was used
to find the a posteriori distribution and the studied
parameters. Computational analyses were composed
of three chains, each one comprising 10,000 iterations
(the first 5,000 ones were discarded) spaced by 15 point
samples (thinning), and 1,002 iteration number
simulations. The Gibbs sampler is a necessary iterative
algorithm to verify the convergence through the
Gelman-Rubin (R) statistics, which is used to assess
the variance ratio between the chain and the variance
within the chain. R values below 1.1 confirmed the
iteration convergence (Gelman & Rubin, 1992).

Two prior distributions were tested. Type 1 was
the positive half-normal to the 6%, 6%;, 6%, and oG
variances; its prior distribution values were calculated
based on the inversed variance of previous trials by
using 18 lines from the total of 51 evaluated ones,
namely: Jab 4, Jab 5, Jab 6, Jab 7, Jab §, Jab 10, Jab 12,
Jab 15, Jab 16, Jab 17, Jab 19, Jab 20, Jab 22, Jab 23,
Jab 24, Jab 39, Jab 40, and Jab 41. These genotypes
were previously assessed in tree experiments
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conducted in Jaboticabal (2011/2012 and 2012/2013),
and in Piracicaba (2012/2013) (Di Mauro et al., 2014).

Type 2 prior distribution was tested through
uniform distribution [0, and 5,000,000]. These values
were used according to related studies (Di Mauro et
al., 2014). The selection of the best prior distribution
to be used in the Bayesian analyses was achieved
through -2 x log-likelihood to the mean of the posterior
parameters, the posterior mean of -2 x log-likelihood,
the effective number of parameters and the deviance
information criteria (DIC) (Spiegelhalter et al., 2002).

The mean genotype was calculated through the
Bayesian approach, mixed models, adjusted mean
(Ismeans: least-squares means) and arithmetic mean.
The correlation coefficient between mean and mean
rank of the evaluated methods, and the genotype
means were estimated. The Spearman correlation
between ranks was estimated ranks.

The random effect on the model used in unbalance
experiments (data) was assessed through the deviance
analyses according to Resende (2007), and through the
analysis of variance.

All the Bayesian analyses were conducted in the R
software (R Core Team, 2016) package R2WinBUGS
(Sturtz et al., 2005). Blups (genotypic value) and
variances were analyzed through REML by using the
Ime4 package. Deviance analyses were assessed via
Imtest package (Zeileis & Hothorn, 2002).

Results and Discussion

All the variation sources were significant for F and
for the likelihood ratio test (LRT) (Table 1).

As to the assessed environments, two of them
were favorable and 4 were unfavorable; the checked

environmental index signal was positive and negative
(I). Besides, the coefficient of variation varied from
21.04% up to 51.47% (Table 2).

The half-normal was the most appropriate prior
distribution to find the genetic value through MCMC
method. This prior distribution showed the smallest
information deviance criterion (DIC), deviance of
posterior mean parameters (D), and deviance of
posterior mean (D), but the effective number of
parameters (Pp) in positive half-normal was higher than
in the uniform distribution. The larger the effective
number of parameters, the easier the data fit by the
model (Table 3). The half-normal distribution has been
used to set the number of replicates in plant breeding
experimental designs because it has been showing the
smallest deviance criteria (DIC) (Omer et al., 2014b), as
well as heritability and genetic gain estimates through
the Bayesian approach (Omer et al., 2014a). The DIC
is an estimated error prediction; the lower value
indicates a better adjusted model. The DIC from half-
normal distribution was lower than the distribution
uniform value. It indicates that the half-normal prior
distribution should be taken into consideration rather
than the uniform distribution. Therefore, all the
variance components were found through the half-
normal prior distribution. Previous experimental data
information in genetic experiments lead to better
variance estimates and decrease the residual variance
(Carneiro Janior et al., 2005). Moreover, the chosen
of priors to calculate posteriors, conducted through
the Bayesian approach, was generated according to
the inverse variance of 18 genotypes, collected from
55 genotypes in the present study.

The genotype behavior was estimated in percentiles
of the previous values, and in their ranks, according

Table 1. Deviance analyses and F-test to measure the random and fixed effects, respectively, on soybean grain yield

(kg ha').
Variation source Bayesian analysis Analysis of variance

Deviance Statistic test p-value DF Mean square F-value p-value
Environment ) F=29.38 <0.0001 5 124,875,061.1 94.87 <0.0001
Replicate/environment 15,935.10@ LRT=10.22 0.0014 12 3,896,104.0 2.96 0.0005
Genotypes 15,937.48@ LRT=12.59 0.0004 54 3,453,633.5 2.62 <0.0001
Genotypes x environment 15,932.09@ LRT=7.20 0.0073 264 1,711,109.2 1.30 0.0052
Complete model and Error® 15,924.89 601 1,316,272.0

(OFixed effect was not calculated. F, F-test calculated; LRT, likelihood ratio test conducted through chi-square at 1 degree of freedom. Chi-square table
value at 1% equals 3.83, and, at 5%, equals 6.63. ®Adjusted deviance model without the referred effect. ®Complete model for Bayesian analysis and

error for analysis of varinace.
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to the posterior mean by using the Bayesian approach
(Table 4). Moreover, the mean national soybean grain
yield is 2,870 kg ha' (Conab, 2017). Thus, taking into
account the credibility interval, the genotypes Jab 42,
Jab 44, Jab 32, Jab 31, Conquista, Jab 27, Jab 41, and
Jab 5 showed higher values of the limit credibility
interval that were above the mean national grain yield,
therefore, they were considered the most productive
genotypes. Besides, the Jab 42 line remains in the
breeding process, and it was herein highlighted as a
potential genotype that shows grain yield values above
the national mean (Table 4).

Genotypes Jab 48, Jab 15, Jab 26, Jab 24, Jab 6,
and Jab 25 did not reach a high rank, taking into
consideration the percentiles 2.5 and 5%; therefore,
they should not be selected. According to the ranks, the
percentiles 95 and 97.5% would show the predictions
of the most unproductive genotypes, if it was selected
based on the mean. Genotype Jab 42 may decrease to
the 2" position (percentile 97.5%), or remain in the 1%
one (percentile 95%, and others).

Means obtained through the Bayesian approach,
Ismeans, and genotypic mean were the least discrepant
ones for magnitude and rank (Tables 4 and 5) because
they are methods based on experimental designs used
to adjust the means whenever necessary. The posterior
distribution in the Bayesian method is generated for
the studied parameters (genotype, heritability etc.) as
a random effect. Genotypes are treated as fixed effect
in Ismeans or in marginal mean predictions, and mean
adjustment is done according to the factor found in the
linear model (genotype, replicate/environment, and
environment). Genotypes are treated as random effects
in the mixed model method, and the same genotype

Table 2. Soybean grain yield, overall mean, and the
environmental index of the assessed locations and crop
seasons.

Location Crop Grain yield Coefficient of Environmen-
season (kgha')  variation (%) tal index (I))
Jaboticabal 2013/2014  1,901.36 44.24 -475.90
Jaboticabal ~ 2014/2015  2,335.26 38.21 -42.00
Jaboticabal  2015/2016  2,169.60 51.47 -207.66
Piracicaba 2013/2014  3,383.12 21.04 1,005.86
Piracicaba 2014/2015  3,371.36 44.51 994.10
Pindorama 2013/2014  1,050.01 31.00 -1,327.25
Overall mean - 2,377.26 48.26 -
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mean in multi-environment experiments is equal to the
general mean + Blup of the genotype + Blup in GXE
interaction (Resende, 2007).

The Bayesian method and Blups were similar for
correlation means; they recorded r = 0.9974. The
Ismeans method used to calculate the mean genotype
showed the second highest correlation values through
the Bayesian method, r = 0.9678. And the simple
arithmetic mean method showed correlation r = 0.9663
(Table 5). The REML/Blup method is the standard one
to calculate the random effects on genotype selection
in plant breeding (Oliveira et al., 2016). This method
showed a high correlation with the Bayesian approach
in partially unbalanced experimental situations.

In the present study, there were 5% missed plots, and
the data set was restricted to six plots only. However,
these missed plots did not significantly influence the
genotype rank effect. Thus, it is necessary to assess the
Bayesian approach in a larger number of missed plots,
environments, and heterogeneous variance situations,
in order to verify its efficiency. The Bayesian approach
was used to model the heterogeneous variances in
an experiment conducted to estimate the error and
the genotype X environment interaction variances.
The Bayesian approach was able to provide a more
parsimonious answer to the question about whether
the use of weighted, or unweighted means, in multi-
environment trial modeling, properly sets the
heterogeneous variances in the assessed experiments
(Edwards & Jannink, 2006).

The genetic parameters estimated through the
analysis of variance and through the mixed model
were similar to all the assessed genetic parameters.
The genetic parameters estimated through the

Table 3. Discrepancy statistics to the prior selection in a
soybean trial for grain yield (kg ha') conducted in six
environments.

Prior distribution =

model D D Py DIC
P1 14,981.80  14,791.60 190.24 15,172.00
P2 15,951.60  15,901.30 50.34 16,001.90

D, posterior mean of -2 x log-likelihood. D,-2x log-likelihood to pos-
terior mean parameters. Pp, parameter effective number. DIC, deviance
criteria information. P1, 6%, 6%, 0%, and 6’z independent distribution
~ positive half-normal with inverse variance = ¢% (0, 0,00028), 6%.(0,
0,00304), 6% .(0, 0,00001), and 6% .(0, 0,00170). P2, 6%, 6%, 6%, and 6%ge
independent ~ uniform (0, and 5,000,000).
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Table 4. Genotype mean predicted were ordered by posterior means, and its ranks were measured by the Bayesian approach
and the frequentist analyses based on predicted genotypic values (BLUPs), on adjusted mean, and on the arithmetic mean
of 55 soybean lines for grain yield (kg ha™).

oans means  Lower Upper ‘oo 0025 005 05 095 0975  Got0.  gepcono  mean

1 Jab42 333133 2914 3843 107 1 1 1 1 2 351427 417980 417980 18
2 Jab44 274328 2390 3168 778 2 2 5 2248 27 280250  3,05761 305761 18
3 Jab32  2,65586 2262 3052 1106 2 2 9 29 34 270758 290795 290795 18
4 Jab3l  2,62242 2260 2994 1239 2 2 10 32 36 267094 285019 285019 I8
5 Conquista  2,620.53 2255 3004 1256 2 2 10 32 36 266600 284240 284240 18
6 Jab27 261951 2225 2991 1272 2 2 10 33 3698 2,670.05  2,84878 284878 I8
7 Jab4l  2,59481 2180 2970 1381 22 11 34 3849 265207 290769 282745 17
8 Jabs  2,59056 2,205 298 1403 2 2 11 35 3998 263643 279577 279577 18
9 Jab30  2,567.34 2,159 2934 1525 2 3 13 37 40 259421 272361 282076 17
10 Jab4s  2,563.80 2213 2976 1559 2 3 14 36 39 260641 273720 283576 17
11 Jab39 252719 2,189 2955 1739 203 3 15 39 42 256591  2,684.60  2,684.60 18
12 Jabl 250670 2,099 2,856 1849 3 35 16 40 43 255747 267129 267129 I8
13 Jab7 250669 2,085 2857 1853 3 4 17 41 44 253933 2,642.69 264269 18
14 Jab43 249892 2,090 2913 1914 2 3 17 41 45 253052 259747 265190 17
15 Jab35 248926 2,088 2,862 1947 3 4 I8 41 44 250367  2,540.52  2,60915 17
16 Poténcia 248678 2,126 2876 1960 3 4 18 42 45 251325 260156  2,601.56 18
17 Jab2 243957 2,022 2813 2249 4 5 21 44 47 245212 248870 244642 17
18 Jab1l 243903 2,100 2855 2278 4 5 22 44 4698 244851 251001 243705 17
19 Jab47 242959 2,020 2778 2304 4 6 22 44 4798 245461 248274 257431 16
20 Jab3 242053 2,055 2788 2355 4 6 23 44 4798 243679  2481.02 248102 I8
21 Jab10 241902 2,033 2821 2387 4 5 23 4598 49 241994 247063 242862 17
22 Jab49 241054 2050 2,807 2420 4 6 23 45 48 241766 245087 245087 18
23 Jab36 239855 2,016 2772 2500 5 605 2425 45 4998 241674 242038 246428 17
24 Jab23 239144 1,989 2749 2568 403 6 25 47 49 240465 243035 243035 I8
25 Jab38 238361 2007 2750 2605 4 6 2525 47 49 239275 241159 241159 18
26 Jab19 235846 1947 2712 2754 5 7 27 49 50 2363.68  2364.64 243982 17
27 Jabd 235772 1976 2728 2773 57 28 4748 49 235226 231335 243390 17
28 Jab46 235590 1957 2718 2778 S 7 27 48 50 234465 232744 241670 17
29 Jab29 235575 2,008 2763 2794 5 7 29 47 49 235650 234190  240L11 17
30 Jab34 235134 1960 2728 2822 5 7 29 48 50 234181 227917 226380 16
31 Jab18 234073 1912 2671 2857 6 9 28 49 50 234421 233506 233506 I8
32 Jabsl 232956 1997 2717 2952 7 9 30 48 50 233737 232428 232428 I8
33 Jab40 230398 1,889 2,657 3097 603 10 32 50 5149 229639  2259.66 225966 I8
34 Jab50 229455 1943 2,680 3176 7 11 33 49 51 226720 220648 225505 17
35 Jab28 229354 1927 2659 3154 9 115 32 50 52 228764 224586 224586 18
36 Jab33 227731 1925 2,683 3253 701 11 33 Sl 52 225888 220053 220053 I8
37 Jab9 227619 1868 2,670 328 7 10 34 51 52 225081 218233 2,963 16
38 Jab20 227616 1876 2629 3276 8 12 34 51 52 226370  2227.69 222125 17
39 Jab2l  2253.82 1,854 2,629 3410 9 13 35 51 53 223106 215666 215666 I8
40 Jab22 223335 1859 2,620 3537 10 1305 37 52 53 221437 213035 213035 18
41 CD-216 221419 1846 2,596 3646 11 1553 38 52 53 216376 202743 206377 16
42 Jab8 220478 1,842 2628 3698 1103 16 39 52 54 217553 206911  2,069.11 18
43 Jab13 217563 1798 2,554 3865 1403 18 41 53 54 2160.64 205534  2,10844 16
44 Jab16 217326 1770 2,558 3889 13 I8 41 53 54 214006 201335 201335 I8
45 V-Max 214840 1651 2722 3856 7 1l 42 55 55 22448 223426 217449 16
46 Jab37 213946 1,696 2492 4057 15 20 4275 54 55 209206 190508 195490 17
47 Jab17 211246 1,622 2,591 4085 12 16 44 55 55 206398 110334 110334 6
48 Jabl4 210745 1708 2476 4234 18 24 4475 54 55 205868 188488  1884.88 I8
49 Jabl12 200507 1,598 2,541 4119 13 1753 44 55 55 205602 1,61492 161492 7
50 Jab48  2,098.04 1,683 2485 4253 19 23 45 54 55 204142 185768  1857.68 I8
51 Jabl5  2,037.59 1,668 2451 4545 23 28 48 55 55 198418 176743 176743 18
52 Jab26 201536 1,615 2368 4609 25 29 49 55 55 195689 172440 172440 18
53 Jab24  1969.07 1,596 2377 4808 29 33 505 55 55 188934 161790 161790 18
54 Jab6 193813 1,529 2351 4883 2903 34 51 55 55 186543  1,586.84 163500 17
55 Jab25 190855 1476 2,283 4974 33 37 52 55 55 182689 147225 151855 17

(Posterior of the credibility interval. @Genotypic value: general experimental mean + Blup + GE interaction mean. ®Total of replicate number by which
each genotype was evaluated.
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Bayesian approach and the mixed model were similar
to the heritability at mean level (h’mg), genotype
selection accuracy (Acgen), and genetic variation
coefficient (CVgi%) (Table 6). Besides, the heritability
and genotypic correlation values between genotype
behaviors corroborate the published literature if
one takes into consideration the different grain
yield (kg ha') environments (Di Mauro et al., 2014).
Accuracy values were classified as high in both the
Bayesian and mixed model methodologies, as these
methods showed values above 0.7 (Resende & Duarte,
2007).

The Bayesian approach showed the smallest GE
interaction variance, showing the lowest determination
coefficient of the GE interaction (c*int). Consequently,
the genotypic correlation coefficient between
genotypes in different environments (rgloc) increased
up to the unit value. A rgloc value close to the unit
in genotype selection implies a genotype-selection
confidence increase in some tested environments
(Resende, 2007).

The GE interaction defined that rgloc > 0.80 in
simulation studies, using the analysis of variance,
indicates a simple interaction. A rgloc <0.20 evidences
a complex interaction (Cruz & Castoldi, 1991). Thus,
rgloc close to one indicates lesser complex GE
interaction, adaptability, and stability because of the
variation decrease of the environment (Rosado et al.,
2012). The interaction effect is associated with two
factors: the first simple one, which is the variability
difference between genotypes in the environments;

Table 5. Correlation coefficient between means and ranks
of all the assessed methods. Superior diagonal, Pearson
correlation between mean genotypes and the inferior
diagonal, Spearman correlation coefficient between
genotype ranks for soybean grain yield (kg ha™).

Bayesian Blups Lsmeans Arithmetic
Bayesian 0.99742 0.96775 0.96627
_____________ ) <0.0001* <0.0001 <0.0001
Blups 0.99740 0.97256 0.96945
_____________ <0.0001 i <0.0001 <0.0001
Lsmeans 0.98954 0.99430 0.99629
<0.0001 <0.0001 . <0.0001
“Arithmetic  0.98867 0.99091 0.99019
<0.0001 <0.0001 <0.0001 )

*Significant by the t-test at 5% probability.
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and the second one (the complex factor), which is
indicated by genotype superiority inconsistency with
the environment variation. In other words, there are
genotypes that shows a superior behavior in a certain
environment, but the same genotype is not observed in
another environment; so, it increases intricacy in the
suggested selection (Cruz et al., 2012).

The predicted error variance (PEV) in genotype
values and the standard deviation in genotypic variance
values (SEP) in the Bayesian approach were smaller
than those in the mixed model, indicating a better
adjustment in the mean soybean genotype calculated
a posteriori. The smaller PEC and SEP values are
desirable for plant breeding programs because they are
directly linked to precision and accuracy maximization
(Resende & Suarte, 2007).

The advantages of using the Bayesian method in
experimental data lies on its methodology, which

Table 6. Genetic parameters estimated through the analysis
of variance, likelihood method, and Bayesian approach for
soybean grain yield (kg ha™).

Genetic Analysis of REML Bayesian CI 95%
parameter variance [lower; upper]
[ 103,486.10  102,260.30  84,841.57

02 136,711.50  142,192.01 4,433.44

o’ 1,316,272.10 1,312,588.37 1,269,348.00

o’ 1,556,469.70 1,557,040.68 1,354,189.60

h’mg 0.52 0.51 0.53 (0.39; 0.68)
Acgen 0.72 0.72 0.73

c’int 0.09 0.09 0.003

Rgloc 0.43 0.42 0.95

CVgi% 13.53 13.55 12.36

CVe% 48.26 48.55 4779

PEV 49,777.46 49,680.15 18,544.99

SEP 223.11 222.89 136.18

M 2,377.26 2,360.06 2,357.51

2 2 2 2 . . . .
G; =G, + G, *+ 0., phenotypic variance; ¢%, genotypic variance; 67,
genotypic X environment interaction variance; czint:cic/cs?, de-
termination coefficient of the GE interaction effect; o2, residual va-

2 _ 2 2 2 2 :

h m,g—crg/(csg +ch/N.env+Gg/(N.enV><N.rep)) is the

heritability at mean level (genotype); Acgen= l(l_PEV/gz) is the

riance;

genotype selection accuracy; CVgi= G: / M is the genetic coefficient
variation; CVe:\/cf/M is the environmental variation coefficient;
rgloc=0§ / (Gé +G§e) is the genotypic correlation between genotype
behavior in several environments; PEV = (l —Acgenz)xcz is the error
variance prediction; SEP =+/PEV is the standard deviation of progeny
genotypic value; M is the overall mean; CI is the credibility interval;
N.env is the number of environments; N.rep is the number of replicates.
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allows of the use of previous data information,
presents a lesser sensitive modeling to outliers
than the frequentist methods, and works well with
lesser assumptions (large sample numbers, balance
experiments, etc.) in analysis processes (Singh et al.,
2015).

It is worth highlighting that the Bayesian approach
applied to complex agriculture experimental data,
such as years, crops, location, and interaction in the
model, takes a bit longer than the mixed model in
computer processes. Besides, with regard to specific
cases based on prior information, the Bayesian analysis
could assemble a posterior distribution, which would
be highly influenced by the prior information. In this
case, it is recommended to use the prior information as
parsimony (Gelman, 2006).

Conclusions

1. The mixed models and the Bayesian methodology
show similar genetic parameters.

2. The mean genotypic values obtained through the
Bayesian approach differ from those obtained through
the frequentist method.

3. The Bayesian approach uses previous soybean
experimental data information that can be used as
tools in soybean breeding programs.
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