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Soil Science/ Original Article

Individualization of soil 
classes by disaggregation of 
physiographic map polygons
Abstract – The objective of this work was to disaggregate the polygons of 
physiographic map units in order to individualize the soil classes in each one, 
representing them as simple soil map units and generating a more detailed soil 
map than the original one, making these data more useful for future reference. 
A physiographic map, on a 1:25,000 scale, of the Tarumãzinho watershed, 
located in the municipality of Águas Frias, in the state of Santa Catarina, 
Brazil, was used. For disaggregation, three geomorphometric parameters were 
applied: slope and landforms, both derived from the digital terrain model; and 
an elevation map. The boundaries of the physiographic units and the elevation, 
slope, and landform maps were subjected to cross tabulation to identify the 
existing combinations between the soil classes of each physiographic unit. 
Based on these combinations, rules were established to select typical areas of 
occurrence of each soil type in order to train a decision tree model to predict 
the occurrence of soil classes. The model was trained using the Weka software 
and was validated with a set of georeferenced soil profiles. Disaggregation 
enables the individualization and spatialization of soil classes and is useful in 
producing detailed soil maps.

Index terms: decision trees, digital soil mapping, pedology, soil class prediction.

Individualização de classes de solos por 
desagregação de polígonos de mapa fisiográfico
Resumo – O objetivo deste trabalho foi desagregar os polígonos de mapas de 
unidades fisiográficas, de modo a individualizar as classes de solos ocorrentes 
em cada unidade, para representá-las como unidades de mapeamento simples 
de solos e gerar um mapa de solos com maior detalhe cartográfico que o 
mapa original, ampliando a utilidade desses dados em demandas futuras. Foi 
utilizado um mapa fisiográfico, em escala 1:25.000, da microbacia Córrego 
Tarumãzinho, localizada no Município de Águas Frias, no Estado de Santa 
Catarina. Para realizar a desagregação, foram utilizados três parâmetros 
geomorfométricos: declividade e formas do terreno, ambas derivadas do 
modelo digital do terreno; e mapa de elevação. Os limites das unidades 
fisiográficas e os mapas de elevação, declividade e formas do terreno foram 
submetidos à tabulação cruzada para identificar as combinações existentes 
entre as classes de solos que compõem cada unidade fisiográfica. A partir 
dessas combinações, foram elaboradas regras para selecionar áreas de 
ocorrência típica de cada tipo de solo, para treinar um modelo de árvores 
de decisão para predição da ocorrência das classes de solos. O treinamento 
do modelo foi realizado no programa Weka, e a sua validação foi feita com 
um conjunto de perfis de solos georreferenciados. A desagregação possibilita 
a individualização e a espacialização das classes de solos e é útil para a 
produção de mapas de solos detalhados.

Termos para indexação: árvores de decisão, mapeamento digital de solos, 
pedologia, predição de classes de solos.
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Introduction

Detailed knowledge regarding the spatial distribution 
of soil is vital for soil management programs aimed at 
monitoring the environment and managing agricultural 
production. However, information on soil is often 
scarce or only available on a small scale, limiting its 
usefulness. Factors such as reduced investments in 
soil surveys and in the time spent on soil research 
have contributed to this scenario (Arruda et al., 2016; 
Regmi & Rasmussen, 2018; Vincent et al., 2018).

In this context, it is important to take advantage 
of existing information that explains the occurrence 
of soil in the landscape. Physiographic maps (PMs) 
are a source of soil data and consist of physiographic 
units (PUs), each exhibiting a degree of unique 
pedological homogeneity in relation to neighboring 
units. However, the lack of detail and the insufficient 
information provided by these maps limits their 
application, precluding their use in projects that 
require in-depth knowledge of soil distribution, such 
as the assessment of ecosystem services (Vincent et al., 
2018). An example is the technical report of Empresa 
de Pesquisa Agropecuária e Extensão Rural de Santa 
Catarina (Epagri, 2004), which describes the spatial 
distribution of the soils in the landscape, but does not 
represent graphically the soil classes on the produced 
map. Despite this, PMs may still be important starting 
points for producing more detailed soil maps. A 
possible approach is the spatial disaggregation of the 
polygons of the combined PUs to better represent the 
spatial distribution of soils by individualizing and 
locating soil types in the landscape (Häring et al., 
2012; Li et al., 2012; Odgers et al., 2014; Sarmento et 
al., 2017; Machado et al., 2018; Vincent et al., 2018).

Disaggregation is a conceptual approach aimed 
at converting current data into formats compatible 
with modern needs and the pedological concepts of 
soil formation (Bui & Moran, 2001), in an attempt 
to update soil maps (Wei et al., 2010; Smith et al., 
2012) and distinguish between soil classes within 
the boundaries of combined map units (MUs) in less 
detailed soil maps.

Soil-landscape relationships and quantitative pre-
diction are frequently used in soil map disaggregation. 
They are important tools in characterizing the spatial 
variability of the soil resource and in understanding 
its distribution in the landscape, since the association 
between predictor variables and soil classes has 

significant potential to improve predictions of the 
occurrence of soil types in the landscape. Häring et 
al. (2012) used soil-landscape relationships based on 
environmental covariates in the spatial disaggregation 
of complex soil map units. According to the authors, 
this method is based on the functional relationship 
between different soil types and their position in the 
landscape, in line with the concept of toposequences.

Decision trees (DTs) are a useful tool in the 
disaggregation of conventional soil maps (Wei et al., 
2010; Häring et al., 2012; Li et al., 2012; Sarmento et 
al., 2017) and in geology (Bui & Moran, 2001) because 
of their ability to transcribe the complex relationship 
between soil and landscape (Walter et al., 2006), 
as well as to deal with qualitative and quantitative 
predictor variables (Scull et al., 2005). DTs are 
hierarchical sequential structures that partition data 
into subsets: each internal node represents a test of a 
covariate; each branch, a result of the test; and each 
leaf, a soil class (Moran & Bui, 2002; Grinand et al., 
2008; Crivelenti et al., 2009). Vincent et al. (2018) used 
DTs and expert knowledge to spatially disaggregate 
soil MUs of the Brittany region in Northwest France. 
The authors retrieved information on soil-landscape 
relationships from an existing soil database and used it 
for disaggregation, combined with a set of covariates.

The objective of this work was to disaggregate 
the polygons of physiographic map units in order to 
individualize the soil classes in each one, representing 
them as soil map units and generating a more detailed 
soil map than the original one, making these data more 
useful for future reference.

Materials and Methods

The study was conducted in the Tarumãzinho 
watershed, located in the municipality of Águas Frias, in 
the west of the state of Santa Catarina, Brazil (Figure 1), 
in an area of approximately 27.7 km2, containing five 
main reliefs: flat, slightly undulating, undulating, 
strongly undulating, and mountainous (Potter et al., 
2004). The climate in the region is classified as humid 
subtropical, Cfa according to Köppen’s classification, 
with an average annual rainfall of 1,725 mm and an 
average annual temperature of 18.7°C. The parent 
material is basalt from the Serra Geral formation. The 
PU, on a 1:25,000 scale, and the technical report on the 
watershed describe the predominant soil types in the 
PUs and their associations (Epagri, 2004). Although 
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the map does not depict the spatial distribution of the 
soil, this information is provided in the report.

Through photo interpretation and a field survey 
of the study area conducted by Empresa de Pesquisa 
Agropecuária e Extensão Rural de Santa Catarina 
(Epagri, 2004), six physiographic units were identified 
(Figure 1), taking into account their depositional or 
erosional origin: erosional summit (ES), erosional 
slope (ESL), erosional colluvial slope (ECS), colluvial 
erosional slope (CES), plateau slope (PS), alluvial 
colluvial valley bottom (ACVB).

The ESs are slightly undulating, subrounded, and 
flat forms with varying widths, at high altitudes (500 to 
655 m), with a wide elongated base. This PU is located 
at a steeper gradient subject to constant soil loss mainly 
in deforested areas. Erosive processes (material losses) 
predominated over the depositional ones on ECSs and 
determined the current features of this unit, which is 
uniquely shaped and located immediately below ESLs 
and/or PSs. CESs are formed after ECSs, where the 
dominant process is the gradual deposition of sediments 
via rain and sheet erosion, which accumulate downhill 

Figure 1. Physiographic map of the Tarumãzinho watershed, located in in the municipality of Águas Frias, in the state 
of Santa Catarina, Brazil. Components: ES, erosional summit; PS, plateau slope; CES, colluvial erosional slope; ACVB, 
alluvial colluvial valley bottom; ECS, erosional colluvial slope; and ESL, erosional slope.
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through the force of gravity and give rise to this PU. 
The PSs result from the differentiation of basalt flows 
and their internal variation: the upper section of basalt 
is more easily weathered in relation to the intermediate 
zone, generating a topographic rebound. These 
alternating factors lead to the formation of the steps 
that characterize the plateaus. The ACVB consists of 
the lowest altitude and lowest gradient areas of the 
watershed in the form of flat-floored valleys influenced 
by the Tarumãzinho stream.

The adopted methodology proposes creating 
disaggregation rules based on formal knowledge about 
soil-landscape relationships, as described by Häring 
et al. (2012), Odgers et al. (2014), and Sarmento et 
al. (2017), among others. However, adjustments 
were made to overcome the lack of a soil structure 
database to aid in the construction of rules, since the 
aforementioned studies all used a less detailed soil 
map to be disaggregated.

The first phase in the procedure involved analyzing 
the PM and the technical report, in order to identify 
the total number of PU polygons on the PM, the 
number of PUs related to one or more soil classes, 
references to possible inclusions of other soils, the 
main characteristics and properties of each PU, as 
well as the location of representative profiles and their 
analytical and morphological data. Data analysis took 
into account the reported distribution of soil classes 
in the landscape according to altitude, slope, and the 
other characteristics described in the technical report.

Based on this information, it was found that the 
PM consisted of 87 polygons representing the spatial 

distribution of six PUs, four of which were single 
and two combined MUs. One of the combined MUs 
contained two soil classes and the other three, all in 
the form of soil associations, but the soils were not 
mapped individually due to scale limitations. The area 
occupied by the PUs with more than one soil class 
corresponds to 25.7% of the total area of the watershed 
(Table 1).

A digital terrain model (DTM) with a 
spatial resolution of 1 m was used to derive the 
geomorphometric parameters. The DTM was obtained 
from the aerophotogrammetric survey for the state of 
Santa Catarina, conducted by Secretaria de Estado 
do Desenvolvimento Econômico Sustentável (Santa 
Catarina, 2012), using resampling with bilinear 
interpolation techniques and Geotiff images. It was 
generated based on the digital elevation model (DEM), 
according to criteria such as visual analysis of existing 
features, creation of filtering masks, and softening 
and adjusting points from the original DEM within 
the created masks, among others. Based on the DTM, 
the ArcGIS, version 10.4, software (ESRI, 2015) was 
used to generate a slope class map representing the 
types of relief (Manual…, 2015), a landform class map 
(MacMillan, 2003), and an elevation map to identify 
the altitude at which soil classes occur.

The PU boundaries and the slope class, elevation, 
and landform maps were subjected to cross 
tabulation to generate a table with a combination of 
these covariates. Cross tabulation, also known as 
a contingency table, simultaneously describes two 
or more predictive covariates and reflects their joint 

Table 1. Description of the physiographic units (PUs) and soils in the Tarumãzinho watershed, located in the municipality 
of Águas Frias, in the state of Santa Catarina, Brazil.

PU(1) Brazilian system(2) Soil taxonomy(3) Inclusions Area

(%) (ha)

ES Nitossolo Háplico (NX) + Nitossolo Vermelho (NV) Ultisol (NX) + Ultisol (NV) Inceptisol 1.4   38

CES Cambissolo Háplico (CX) + Nitossolo Háplico 
(NX)+ Nitossolo Vermelho (NV) Inceptisol (CX) + Ultisol (NX) + Ultisol (NV) - 24.3 669

ESL Neossolo Litólico Entisol Inceptisol 21.1 580

ECS Cambissolo Háplico Inceptisol Ultisol 32.7 900

PS Cambissolo Háplico Inceptisol - 12.3 339

ACVB Cambissolo Háplico Inceptisol Aquent 8.2 226

Total    100.0 2,752
(1)ES, erosional summit; CES, colluvial erosional slope; ESL, erosional slope; ECS, erosional colluvial slope; PS, plateau slope; and ACVB, alluvial 
colluvial valley bottom. Source: (Epagri, 2004). (2)According to Santos et al. (2013). (3)According to Soil Taxonomy (Soil Survey Staff, 2014).
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distribution. This analysis aimed to individualize the 
covariate combinations in the PUs where each soil 
class occurs. The most common combinations among 
the PUs and the slope, elevation, and landform maps 
were then selected in cross tabulation. Based on these 
combinations, rules were created to individualize 
the typical areas of occurrence of each soil type. For 
example, according to the technical report, in CES, 
Cambissolos Háplicos (Inceptisols) are expected to 
occur on convergent back slopes (CBS) and on back 
slopes (BSL) with a 9 to 12% gradient (Figure 2 and 
Table 2); therefore, several individual rules were made 
for each soil component (Table 2).

The set of rules was applied to all PUs because the used 
report refers to associated soils as inclusions in single 
PUs. The rules were translated into logical expressions 
to select areas that correspond to PU boundaries, slopes, 

landforms, and elevation, representing the locations 
(pixels) that depict each soil type.

These typical areas were then converted into vector 
polygons to facilitate the creation of sampling points 
used to train the predictive model. Random sampling 
stratified by the number of PUs was used, and a 
point density value was established and applied to all 
polygons to produce a similar point density, allowing a 
better distribution (Odgers et al., 2014).

The predictive covariates and PUs containing 
spatial distribution information on the soil classes were 
sampled at 7,085 points on the map, which is equivalent 
to a sampling density of 2.5 points per hectare. Values 
for all the predictive covariates were sampled at these 
points. The data were compatibilized with the Weka, 
version 3.6.6, data mining software (Hall et al., 2009) 
and used to train the J48 algorithm (Quinlan, 1993) of 

Figure 2. Fifteen landforms (fundamental elements) based on slope and curvature classification. Source: adapted from 
Schmidt & Hewitt (2004).
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the DT, which was chosen because it allowed obtaining 
better results than the other algorithms used in digital 
soil mapping (Moran & Bui, 2002; Ten Caten et al., 
2013; Dias et al., 2016). In order to implement the DT 
in an ArcGIS environment, the classification rules 
were adjusted for direct application in the geographic 
information system to predict the spatial distribution 
of soil classes in the disaggregated PM.

The model was validated based on a set of 20 
georeferenced soil profiles (Figure 1), not used in the 
DT construction, considering the spatial agreement 
between the georeferenced profiles and the location 
of individual pixels on the disaggregated map with 
a 1 (5 m) and 2 pixel (10 m) search radii (buffers). In 
this case, the prediction was deemed correct when the 
soil class predicted in the search radius was the same 
as that observed in the reference profile (Smith et al., 
2012; Nauman & Thompson, 2014). The total size of 
the soil classes of the disaggregated PUs on the PM was 
compared with that of the PUs from the reference map 
because the size of map units varies significantly and 
can result in varying effects. The calculation considered 

the absolute error, the relative error between the fraction 
of the reference map and the disaggregated map, and a 
visual comparison of the disaggregated polygons (Li et 
al., 2012; Sarmento et al., 2017).

Results and Discussion

The reference and soil maps produced by 
disaggregating the polygons of combined PUs 
from the PM showed good agreement, evident by 
visual comparison (Figure 3 B and C). Although the 
proportion of individual soil classes predicted per 
unit on the disaggregated map was relatively similar 
to that of the research report (Table 3), with a mean 
relative error of 0.09 ha, it was underestimated, with a 
mean absolute error of 20.37 ha. This may be because 
some soil classes can occur as inclusions that were not 
mapped on the original map due to scale limitations. In 
the adopted methodology, overestimating a soil class 
in a given PU results in the underestimation of the 
other classes (Sarmento et al., 2017). Using a similar 
technique, Li et al. (2012) obtained a mean relative error 

Table 2. Soil class individualization rules for the polygons of combined physiographic units (PUs), based on slope, elevation, 
and landform (LF) class maps and the boundaries of polygons from the physiographic map.

PU(1) Slope (%) Elevation (m) LF(2) Soil taxonomy(3) Legend(4) Brazilian system(4)

ES

<5 655 DSH Ultisols NX Nitossolo Háplico Eutrófico típico

<3 603 FSL Ultisols NV Nitossolo Vermelho Distrófico típico

0–3 509 DSH Ultisols NV Nitossolo Vermelho Eutrófico típico

CES

>12 480 CBS Inceptisols CX Cambissolo Háplico Alumínico típico

9–12 320 BSL Inceptisols CX Cambissolo Háplico Ta Eutrófico típico

10–20 387 DBS Ultisols NX Nitossolo Háplico Eutrófico típico

<9 380 DBS Ultisols NV Nitossolo Vermelho Eutrófico latossólico

ESL
<27 516 DBS Entisols RL Neossolo Litólico Distrófico típico

>46 496 DSH Entisols RL Neossolo Litólico Eutrófico típico

ECS

8–20 437 CBS Inceptisols CX Cambissolo Háplico Eutrófico típico

>30 557 DSH Inceptisols CX Cambissolo Háplico Ta Eutrófico típico

<23 483 DBS Inceptisols CX Cambissolo Háplico Eutrófico típico

PS

>6 575 DSH Inceptisols CX Cambissolo Háplico Ta Eutrófico típico

>11 530 CBS Inceptisols CX Cambissolo Háplico Ta Eutrófico típico

<6 478 DSH Inceptisols CX Cambissolo Háplico Ta Eutrófico típico

ACVB
0–3 300 BSL Inceptisols CX Cambissolo Háplico Ta Distrófico léptico

0–4 450 LSM Inceptisols CX Cambissolo Háplico Ta Eutrófico típico
(1)ES, erosional summit; CES, colluvial erosional slope; ESL, erosional slope; ECS, erosional colluvial slope; PS, plateau slope; and ACVB, alluvial 
colluvial valley bottom. Source: (Epagri, 2004). (2)DSH, divergent shoulder; FSL, foot slope; CBS, convergent back slope; BSL, back slope; DBS, 
divergent back slope; and LSM, lower slope mound. Source: MacMillan (2003). (3)According to Soil Taxonomy (Soil Survey Staff, 2014). (4)According to 
Santos et al. (2013).
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between 0.49 and 0.67 for the relationship between the 
total areas of disaggregated classes and those recorded 
in the Canada Land Inventory. However, the authors 
only took into account the areas of the dominant classes 
in each MU, whereas the present study considered 
correct predictions in relation to all the soil classes 
occurring in the PUs.

The lowest relative errors were recorded in the 
ECS, ESL, and CES (Table 3). Although the ECS 
unit contains only one soil class, namely Cambissolo 
Háplico (Inceptisol), it occupies a 900 ha area on the 
original map, around 32.7% of the total area of the 
watershed. According to the technical report (Epagri, 
2004), the ESL covers 580 ha, i.e., about 21.1% of the 
total area, consisting of a Neossolo Litólico (Entisol). 

On the original map, the total area of the CES is 669 
ha – approximately 24.3% of the total area; however, 
after disaggregation, the sum of the Cambissolo 
Háplico (Inceptisol) + Nitossolo Vermelho (Ultisol) + 
Nitossolo Háplico (Ultisol) soil classes was 670.9 ha, 
that is, an absolute error of only 1.9 ha. These results 
corroborate those of Vincent et al. (2018), who spatially 
disaggregated a conventional soil map and found that 
large areas were overestimated and small ones were 
underestimated.

The highest relative error was recorded for the sum 
of the soil classes in the ES (Table 3). On the original 
map, this PU covered a total area of 38 ha, and, after 
disaggregation, the sum of the Nitossolo Háplico 
(Ultisol) + Nitossolo Vermelho (Ultisol) soil classes 

Figure 3. Map of the taxonomic units (TUs) and corresponding physiographic units (PUs) represented by the outlined 
areas (A); detail of a section of the original physiographic map (B); and detail of a section of the soil map generated by the 
disaggregation of the polygons of combined PUs on the physiographic map (C). TU components: RL, Neossolo Litólico, an 
Entisol; CX, Cambissolo Háplico, an Inceptisol; NV, Nitossolo Vermelho, an Ultisol; and NX, Nitossolo Háplico, an Ultisol. 
PU components: ESL, erosional slope; CES, colluvial erosional slope; ECS, erosional colluvial slope; PS, plateau slope; 
ACVB, alluvial colluvial valley bottom; and ES, erosional summit.
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was 28.7 ha. The observed error may be due to the fact 
that only one georeferenced point was available for 
these classes, which hampered accuracy assessment. 
In addition, the soil classes with a larger number 
of available georeferenced points showed better 
agreement with the disaggregated map. Therefore, the 
most significant errors occurred in the smallest areas, 
reducing the total error of the disaggregated map.

In relation to the area occupied by soil classes after 
disaggregation (Figure 4), Cambissolos Háplicos 
(Inceptisols) predominate in the watershed and occur 
primarily in the ECS and PS (total area of 1,895 ha), 
followed by Neossolos Litólicos (Entisols) in the ESL 
(611 ha), at a 27 to 46% gradient (Epagri, 2004).

Two combined PUs provide an approach that 
identifies how disaggregation can determine the 
size of the area occupied by each soil class. The 
first is the CES (Table 4), which, on the original 
map, is composed of associated Cambissolo Háplico 
(Inceptisol), Nitossolo Háplico (Ultisol), and Nitossolo 
Vermelho (Ultisol), according to the technical report 
(Epagri, 2004). The dominant soil class in the map 
generated by the disaggregation of the PM polygons 
(Table 4) is Cambissolo Háplico (Inceptisol), which 
occupies around 67.75% of the CES, followed by 
Nitossolo Vermelho (Ultisol), with 17% of the area, 
and Nitossolo Háplico (Ultisol), with 15.25%. It should 

be noted that Inceptisols are located in areas closest 
to the valley bottoms and have drainage problems at 
depths below 1 m, when situated near floodplains. 
Ultisols are deep, well drained, and found in the areas 
closest to the toeslopes, with dark-red coloring in the 
subsurface soil horizons (Epagri, 2004).

The second combined PU is the ES, which covers 
approximately 1.4% of the total watershed area on 
the original map and contains associated Nitossolo 
Vermelho (Ultisol) and Nitossolo Háplico (Ultisol), 
in alignment with the technical report (Epagri, 2004). 
Table 4 indicates that Nitossolo Vermelho (Ultisol) 
is the dominant soil class on the disaggregated map, 
occupying about 69.36% of the surface of this PU, 
followed by Nitossolo Háplico (Ultisol), with 30.64%. 
The Ultisols in this unit are largely located at high 
altitudes (500 to 655 m) in slightly undulating areas, in 
the drainage divides of the watershed.

The overall accuracy results of the PM disaggrega-
tion are listed in Table 5. The spatial agreement 
between the georeferenced soil profiles and the location 
of individual pixels on the disaggregated map showed 
an average overall accuracy of 44.4% for simple 
agreement. The overall accuracy increased when 
correct predictions for a 5- and 10-m search radius were 
considered, reaching 52.8 and 72.2%, respectively. 
When validating the model with georeferenced soil 
profiles in a disaggregation study, Vincent et al. (2018) 
found 41 to 45% accuracy for simple agreement, which 

Table 3. Absolute and relative error values between the 
areas on the original map (OA) and the total area of the soil 
classes in the physiographic units (PUs) on the disaggregated 
physiographic map (DM).

Soil class(1) (PU)(2) Area of 
the OA

Area of 
the DM

Absolute 
error

Relative 
error

-----------------------(ha)-----------------------

NV+NX (ES) 38.0 28.7 9.30 0.24

NV+NX+CX (CES) 669.0 670.9 1.90 0.00

RL (ESL) 580.0 611.1 31.10 0.05

CX (ECS) 900.0 927.9 27.90 0.03

CX (PS) 339.0 311.2 27.80 0.08

CX (ACVB) 226.0 201.8 24.20 0.11

Mean 20.37 0.09
(1)NV, Nitossolo Vermelho, an Ultisol; NX, Nitossolo Háplico, an Ultisol; 
CX, Cambissolo Háplico, an Inceptisol; and RL, Neossolo Litólico, 
an Entisol. Source: Santos et al. (2013). (2)ES, erosional summit; CES, 
colluvial erosional slope; ESL, erosional slope; ECS, erosional colluvial 
slope; PS, plateau slope; and ACVB, alluvial colluvial valley bottom. 
Source: Epagri (2004).

Figure 4. Distribution of the area in relation to the soil 
classes represented in the simple soil map units on the 
disaggregated map of the Tarumãzinho watershed, located 
in the municipality of Águas Frias, in the state of Santa 
Catarina, Brazil. Soil class: CX, Cambissolo Háplico, an 
Inceptisol; RL, Neossolo Litólico, an Entisol; NV, Nitossolo 
Vermelho, an Ultisol; and NX, Nitossolo Háplico, an 
Ultisol. Source: Santos et al. (2013).
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increased to 65 to 72% when a larger search radius 
was considered. Nauman & Thompson (2014) assessed 
disaggregation methods in two soil surveys using 
DTs based on the Gini index, obtaining an overall 
accuracy of 56.4 to 65.1% for pixel classification on 
the conventional map in relation to its disaggregated 
counterpart. This was considered a good result since 
all the map units contained 10 to 25% of other soils or 
inclusions that could influence accuracy.

The accuracy values obtained showed that it was 
possible to generate a soil map that accurately depicted 
the soil classes in MUs by disaggregating the polygons 
of combined PUs on a PM. This is because the typical 
areas of occurrence for each soil type selected to train 

the predictive model accurately represented soil spatial 
distribution in the field. The results showed that the 
relative errors of the disaggregated fraction in relation 
to the fraction described in the report are lower in 
classes covering larger areas, indicating that these 
soils are distributed as in the report.

Some of the differences between the disaggregated 
and original maps are not necessarily errors, but rather 
deviations from one estimate to another in an attempt 
to extract as much as possible from the existing 
information. This is done because the values provided 
in the report are often the only available references on 
the spatial distribution of soil classes (Odgers et al., 
2014).

Table 4. Area occupied by the original physiographic map in relation to that occupied by the soil classes occurring in the 
physiographic units (PUs) of the disaggregated physiographic map.

Soil class(1) (PU)(2) Physiographic map  
(ha)

Legend(1) Soil class(3) Disaggregated map  
(ha)

Area / unit  
(%)

NV+NX (ES) 38
NV Ultisol 8.8 30.64

NX Ultisol 19.9 69.36

NV+NX+CX (CES) 669

NV Ultisol 102.3 15.25

NX Ultisol 114.1 17.00

CX Inceptisol 454.5 67.75

CX (PS) 339 CX Inceptisol 311.2 100.0

CX (ECS) 900 CX Inceptisol 927.9 100.0

RL (ESL) 580 RL Entisol 611.1 100.0

CX (ACVB) 226 CX Inceptisol 201.8 100.0

Total 2,752   2,751.54  

(1)NV, Nitossolo Vermelho, an Ultisol; NX, Nitossolo Háplico, an Ultisol; CX, Cambissolo Háplico, an Inceptisol; and RL, Neossolo Litólico, an Entisol. 
Source: Santos et al. (2013). (2)ES, erosional summit; CES, colluvial erosional slope; PS, plateau slope; ECS, erosional colluvial slope; ESL, erosional 
slope; and ACVB, alluvial colluvial valley bottom. Source: Epagri (2004). (3)According to Soil Taxonomy (Soil Survey Staff, 2014).

Table 5. Accuracy values for the agreement between 
georeferenced soil profiles and the location of individual 
pixels on the soil map generated by the disaggregation 
of the polygons of combined physiographic units on the 
physiographic map of the Tarumãzinho watershed, located 
in the municipality of Águas Frias, in the state of Santa 
Catarina, Brazil.

Forms of validation Disaggregated map

Overall accuracy (%)

Simple agreement 44.4

1 pixel radius (5 m) 52.8

2 pixel radius (10 m) 72.2

Conclusions

1. Disaggregation enables the individualization and 
spatialization of soil classes and is useful in producing 
detailed soil maps.

2. The validation of the soil map with georeferenced 
soil profiles reveals that the larger the search radius, 
the higher the overall accuracy values, with 44.4% in 
simple agreement between soil map pixels and soil 
profiles, and 52.8 to 72.2% when larger search radius 
are used.

3. Disaggregation is most successful for colluvial 
erosional slopes, erosional slopes, and erosional 
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colluvial slopes, which showed the lowest relative 
errors in relation to the other physiographic units.
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