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Statistics/ Original Article

Reference sample size for 
multiple regression in corn
Abstract – The objective of this work was to determine the number of 
plants required to model corn grain yield (Y) as a function of ear length (X1) 
and ear diameter (X2), using the multiple regression model Y = β0 + β1X1 + 
β2X2. The Y, X1, and X2 traits were measured in 361, 373, and 416 plants, 
respectively, of single-, three-way, and double-cross hybrids in the 2008/2009 
crop year; and in 1,777, 1,693, and 1,720 plants, respectively, of single-, three-
way, and double-cross hybrids in the 2009/2010 crop year, totaling 6,340 
plants. Descriptive statistics were calculated, and frequency histograms and 
scatterplots were created. The sample size (number of plants) for the estimate 
of the β0, β1, and β2 parameters, of the residual standard error, the coefficient 
of determination, the variance inflation factor, and the condition number 
between the explanatory traits of the model (X1 and X2) were determined 
by resampling with replacement. Measuring 260 plants is sufficient to 
adjust precise multiple regression models of corn grain yield as a function 
of ear length and ear diameter. The Y = -229.76 + 0.54X1 + 6.16X2 model is a 
reference for estimating corn grain yield.

Index terms: Zea mays, descriptive statistics, hybrids, modeling, resampling.

Tamanho de amostra-referência para 
regressão múltipla em milho
Resumo – O objetivo deste trabalho foi determinar o número de plantas 
necessário para modelar a produtividade de grãos de milho (Y) em função 
do comprimento de espiga (X1) e do diâmetro de espiga (X2), por meio do 
modelo de regressão múltipla Y = β0 + β1X1 + β2X2. Os caracteres Y, X1 e X2 
foram mensurados em 361, 373 e 416 plantas, respectivamente, de híbridos 
simples, triplo e duplo no ano agrícola 2008/2009; e em 1.777, 1.693 e 1.720 
plantas, respectivamente, de híbridos simples, triplo e duplo no ano agrícola 
2009/2010, tendo-se totalizado 6.340 plantas. Foram calculadas estatísticas 
descritivas, e confeccionados histogramas de frequência e diagramas de 
dispersão. O tamanho de amostra (número de plantas) para a estimação dos 
parâmetros β0, β1 e β2, do erro-padrão residual, do coeficiente de determinação, 
do fator de inflação da variância e do número de condição entre os caracteres 
explicativos do modelo (X1 e X2) foram determinados por reamostragem, com 
reposição. A mensuração de 260 plantas é suficiente para ajustar modelos de 
regressão múltipla precisos para produtividade de grãos de milho, em função 
do comprimento de espiga e do diâmetro de espiga. O modelo Y = -229,76 + 
0,54X1 + 6,16X2 é referência para estimar a produtividade de grãos de milho.

Termos para indexação: Zea mays, estatística descritiva, híbridos, 
modelagem, reamostragem.
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Introduction

Corn (Zea mays L.) is the cereal with the highest 
production volume worldwide according to the United 
States Department of Agriculture (Usda, 2019), with 
an estimated production of 1,099.61 million tons 
for the 2018/2019 crop in an area of 189.31 million 
hectares. Brazil is the third largest corn producer, with 
an estimated productivity of 5.40 tons per hectare and 
a total production of 94.50 million tons in an area of 
17.50 million hectares (Usda, 2019).

Numerous bi- and multivariate techniques, such 
as linear correlation coefficients (Toebe et al., 2015), 
canonical correlation (Alves et al., 2016), and path 
analysis (Toebe et al., 2017), have been applied to 
identify the direction and magnitude of the associations 
between corn traits. Multiple linear regression has 
also been used to predict the behavior of one principal 
variable as a function of two or more explanatory 
variables in corn. Laurie et al. (2004), for example, 
found, via simulations, that multiple linear regression 
was the most effective method to detect quantitative 
trait loci in a cross between high- and low-selection 
lines for oil concentration in corn. Ge & Wu (2019) 
used multiple linear regression to predict corn price 
fluctuation, considering production-consumption and 
import and export volume as independent variables. 
Mohammadi (2007) verified, via multiple linear 
regression, that relative growth rate and specific leaf 
area were the best predictors of the competitiveness of 
corn cultivars against weeds.

In some of these bi- and multivariate techniques, 
sample sizing was performed for different precision 
levels. Toebe et al. (2015) recommended 195 corn 
plants to estimate correlation coefficients, whereas, in 
a specific path analysis scenario, Toebe et al. (2017) 
suggested 120 corn plants to estimate direct effects. 
Using a multivariable prediction model, Riley et 
al. (2019) recommended, based on four criteria of 
sample sizing, at least 918 subjects in a model with 25 
predictor parameters. For multiple linear regression 
and the analysis of covariance, Bujang et al. (2017) 
suggested a minimum sample size of 300 or more 
to generate an approximation of estimates with 
parameters in a clinical survey. In order to obtain a 
reliable regression model to predict leaf area, Antunes 
et al. (2008) recommended, at least, 200 leaves for 
two coffee species – Coffea arabica L. and Coffea 
canephora Pierre ex A.Froehner; Pompelli et al. 

(2012), 415 leaves for physic nut (Jatropha curcas L.); 
Cargnelutti Filho et al. (2015), 200 leaves for jack bean 
[Canavalia ensiformis (L.) DC.]; and Cargnelutti Filho 
et al. (2018), 240 leaves for velvet bean (Stizolobium 
cinereum Piper & Tracy).

According to Knofczynski & Mundfrom (2008) 
and Bujang et al. (2017), in multiple linear regression, 
sample size varies according to effect size and the 
number of independent variables. Knofczynski & 
Mundfrom (2008) found a negative exponential 
relationship between the squared multiple correlation 
coefficient and the minimum sample size, i.e., as the 
squared multiple correlation coefficient decreases, 
the sample size increases. Furthermore, Kelley 
(2008) showed how the population squared multiple 
correlation coefficients, desired confidence interval 
width, and number of regressor variables affected the 
necessary sample size for multiple linear regression. 
Hanley (2016) highlighted differences in sample size 
for Y regressions as a function of controlled (exposure) 
or uncontrolled (nonexperimental) X values in multiple 
linear regression.

In the sampling design used to determinate the 
squared multiple correlation (ρ2) in multiple linear 
regression, Bonett & Wright (2011, 2014) emphasized 
the importance of adopting sample size planning 
formulas to obtain an acceptably accurate estimate of 
ρ2. In addition, Shieh (2013) showed the importance 
of computationally intensive and simulation-based 
methods to determine this statistic. According to 
Knofczynski & Mundfrom (2008) and Bonett & Wright 
(2014), the different sample size recommendations for 
ρ2 and/or multiple linear regression are associated 
with the different criteria adopted by each researcher. 
However, there are no know studies in the literature 
on the sample size recommended for multiple linear 
regression in corn.

The objective of this work was to determine the 
number of plants required to model corn grain yield (Y) 
as a function of ear length (X1) and ear diameter (X2), 
using the multiple regression model Y = β0 + β1X1 + β2X2.

Materials and Methods

Two experiments with corn were carried out in 
an area located in the municipality of Santa Maria, 
in the state of Rio Grande do Sul, Brazil (29º42’S, 
53º49’W, at 95 m altitude). The first was conducted 
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in the 2008/2009 crop year, and the second, in the 
2009/2010 crop year. According to Köppen-Geiger’s 
classification, the climate of the region is Cfa, 
subtropical humid (Alvares et al., 2013). The soil is an 
Argissolo Vermelho Distrófico arênico (Santos et al., 
2013), i.e., a dystrophic sandy Argisol.

In the first experiment, sowing was performed on 
12/26/2008. Four plots were sown with the P32R21 
single-cross hybrid, four with the DKB566 three-way 
cross hybrid, and four with the DKB747 double-cross 
hybrid. In the second experiment, sowing was carried 
out on 10/26/2009. Sixteen plots were sown with the 
30F53 single-cross hybrid, 16 with the DKB566 three-
way cross hybrid, and 16 with the DKB747 double-
cross hybrid.

Each plot consisted of four 6.0-m rows, 0.8 m apart, 
with density adjusted to five plants per row meter, 
representing a density of 62,500 plants per hectare. 
Therefore, each plot consisted of 120 plants, totaling: 
1,440 plants in the first experiment, with 3 hybrids × 4 
plots per hybrid × 120 plants per plot; and 5,760 plants 
in the second, with 3 hybrids × 16 plots per hybrid × 120 
plants per plot. In each crop year, plots of the single-, 
three-way, and double-cross hybrids were randomized 
in the experimental area. In both experiments, basic 
fertilization was 750 kg ha-1 of the 3-24-18 (N-P2O5-
K2O) formula, and topdressing was 300 kg ha-1 
urea with 45% N. The other cultural practices were 
performed according to the recommendations for corn 
(Fancelli & Dourado Neto, 2004).

In the first experiment, 361, 373, and 416 plants 
were assessed, respectively, for single-, three-way, and 
double-cross hybrids. In the second, 1,777, 1,693, and 
1,720 plants were evaluated, respectively, for single-, 
three-way, and double-cross hybrids. Therefore, a total 
of 6,340 plants were measured for the following traits: 
ear length (X1, in mm), ear diameter (X2, in mm), and 
grain yield (Y, in grams per plant). Since only plants 
that presented the three traits were assessed, the final 
number of plants varied between plots and hybrids.

For each trait (X1, X2, and Y) of each hybrid in 
each experiment and for all hybrids and experiments 
(overall, n=6,340 plants), the following statistics were 
calculated: mean, median, minimum, maximum, 
standard deviation (SD), coefficient of variation (CV), 
skewness, and kurtosis. Pearson’s linear correlation 
matrix between traits also was estimated.

From the overall data set of 6,340 plants, frequency 
histograms and scatterplots were created. Then, Y was 
adjusted as a function of X1 and X2 by the multiple 
regression model Y = β0 + β1X1 + β2X2 + ɛ, where β0, 
β1, and β2 are the regression parameters; and ɛ is the 
residue or error of regression. The decision to use all 
plants (n=6,340 plants) was based on the similarity 
between hybrids and experiments (six cases) regarding 
the measures of central tendency and variability and 
the coefficients of skewness, kurtosis, and correlation, 
and also on the aim to increase the representativeness 
of the data set and sample size.

The sample size (number of plants) required to 
adjust Y as a function of X1 and X2 in the multiple 
regression model was determined through resampling 
with replacement. For resampling, 991 sample sizes 
were planned, with an initial sample size of 10 plants, 
considered as a reference, i.e., the minimum size 
required for model adjustment. The other sizes were 
obtained in increments of one unit, until reaching 
1,000 plants; therefore, sample sizes of 10 to 1,000 
plants were planned.

For each planned sample size, 3,000 resamples with 
replacement were obtained. For each resample, the 
estimates of the β0, β1, and β2 parameters of the used 
multiple regression model, the residual standard error 
(RSE), and the coefficient of determination (R2) were 
calculated. The degree of multicollinearity between 
the explanatory traits of the model (X1 and X2) was 
evaluated based on the variance inflation factor (VIF) 
and condition number (CN). The VIF was obtained by: 
VIFj = 1/(1 - Rj

2), where Rj
2 is the multiple determination 

coefficient of Xi over the other explanatory traits. The 
CN was calculated by the ratio between the highest 
(λmax) and lowest eigenvalue (λmin) of the correlation 
matrix between the explanatory traits (CN = λmax/λmin). 
Multicollinearity between traits is considered: low, 
when CN ≤ 100; moderate to high, when 100 < CN 
<1,000; and severe, when CN ≥ 1,000; when the VIF 
is greater than 10, multicollinearity is also considered 
severe (Montgomery et al., 2012). Therefore, for each 
sample size, 3,000 estimates of β0, β1, β2, RSE, R2, VIF, 
and CN were obtained, and the 2.5% percentile (P2.5%), 
mean, and 97.5% percentile (P97.5%) were determined. 
The amplitude of the 95% confidence interval was 
calculated by the expression: ACI = P97.5% - P2.5%.

It should be interpreted that the smaller the ACI, 
the more accurate are the estimates of β0, β1, β2, RSE, 
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R2, VIF, and CN, which would allow determining 
the number of plants required to achieve the desired 
ACI values for these parameters. However, there are 
no values for β0, β1, β2, RSE, R2, VIF, and CN that 
can be taken as a reference. Therefore, the following 
statistical criterion was used to define sample size: 
initially, the ACI obtained with the smaller sample 
size of 10 plants (ACI10) was considered as a reference 
for β0, β1, β2, RSE, R2, VIF, and CN; that is, it was 
considered as 100% (maximum ACI and, therefore, 
with minimum accuracy in the estimates of these 
parameters). The accuracy gain (AGi, in %) was then 
calculated with the addition of ith plants (i = 1, 2, ..., 
990 plants, respectively, for sample sizes 11, 12, ..., 
1,000 plants), using the expression: AGi = 100 - (ACIi/
ACI10) × 100, where ACIi is the amplitude of the 95% 
confidence interval of the sample sizes of 11, 12, ..., 
1,000 plants.

Sample size (number of plants) was considered as 
the one in which the gain in accuracy for β0, β1, β2, 
RSE, R2, VIF, and CN was at least 80%. This minimum 
value was determined because, above it, accuracy 
gains became less expressive and tended to stabilize, 
requiring a high investment for the evaluation of a 
larger number of plants and indicating a low accuracy 
gain. The results obtained in the present study can 
be used by other researchers to define sample size 
according to the desired accuracy gains.

The 2.5% percentile, mean, 97.5% percentile, and 
accuracy gain of the sample sizes of β0, β1, β2, RSE, 
R2, VIF, and CN were plotted in graphs for a better 
visual representation. The ACI and accuracy gain 
were presented at an interval of 20 plants, to reduce 
the dimensionality of the results, still keeping them 
sufficiently informative. The statistical analysis was 
performed using Microsoft Office Excel and the R 
software (R Core Team, 2019).

Results and Discussion

The minimum and maximum values of X1 were 
similar between the six experimental cases (28 ≤ 
minimum ≤ 56; 211 ≤ maximum ≤ 281) (Table 1), 
and a similar pattern was observed for X2 and Y. 
The values of the SD and CV of each trait were also 
similar among the six cases, oscillating between 26.34 
≤ SD ≤ 41.80 and 16.70% ≤ CV ≤ 26.35% for X1, 3.52 
≤ SD ≤ 4.90 and 7.73% ≤ CV ≤ 12.23% for X2, and 

40.52 ≤ SD ≤ 55.84 and 31.86% ≤ CV ≤ 46.91% for Y; 
however, among traits, SD and CV increased in the 
following order: X2, X1, and Y. In all cases, for the 
three traits, the values of skewness and kurtosis were 
close to zero and the median and mean were similar, 
indicating good adherence of these data to the normal 
distribution curve.

In the six cases, Pearson’s linear correlation 
coefficients (r) between the pairs of traits were positive 
and similar, oscillating within the following limits: 
0.77 ≤ r ≤ 0.91 for Y×X1; 0.81 ≤ r ≤ 0.86 for Y×X2; and 
0.56 ≤ r ≤ 0.76 for X1×X2 (Table 1). These coefficients 
revealed that larger ears, i.e., ears with greater length 
and greater diameter, presented higher grain yield and 
vice versa. In this sense, Toebe et al. (2017), in the path 
analysis, pointed out the importance of measuring ear 
length and ear diameter to predict corn grain yield.

As previously mentioned, the use of the overall 
data set of 6,340 plants as a sample size is justified 
by the similar pattern observed between hybrids 
and experiments (six cases) for measures of central 
tendency and variability and for the coefficients of 
skewness, kurtosis, and correlation, as well as by 
the better representativeness of the sample. The data 
set of 6,340 plants allows visualizing the reflex of 
the similarity between the six cases in relation to 
data variability and distribution and to the linear 
relationship between traits (Table 1 and Figure 1).

The r between Y×X1 (r = 0.71) and Y×X2 (r = 0.84) 
(Table 1) and the scatterplots between these pairs of 
traits (Figure 1) showed a linear association pattern. 
This is an indicative of the adequacy of the adopted 
multiple regression model. Moreover, the positive linear 
association between X1×X2 (r = 0.53) indicated that it is 
necessary to investigate the degree of multicollinearity 
in the correlation matrix of these explanatory traits. 
Regarding the CVs, the obtained values for X1, X2, and 
Y were 21.96, 12.41, and 44.15%, respectively. High CV 
values are important for modeling, since they show a 
wide variability among corn ears in the dataset (n=6,340 
plants), increasing the representativity of the multiple 
regression model of Y as a function of X1 and X2.

Based on 6,340 plants, the estimates of β0, β1, β2, 
RSE, R2, VIF, and CN were -229.76, 0.54, 6.16, 22.13, 
0.80, 1.39, and 3.25, respectively. For the 3,000 samples 
of 10 plants (smaller size used), the ACI was 329.86, 
1.33, 8.77, 25.86, 0.43, 4.16, and 17.49, and the average 
of the 3,000 samples was -251.79, 0.60, 6.47, 19.76, 0.85, 
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1.85, and 5.05, respectively, for the estimates of β0, β1, 
β2, RSE, R2, VIF, and CN (Table 2 and Figure 2). For 
the 3,000 samples of 1,000 plants (largest size used), 
the ACI was 31.87, 0.11, 0.81, 2.72, 0.05, 0.22, and 0.97, 
and the average of the 3,000 samples was -229.87, 
0.54, 6.16, 22.11, 0.80, 1.39, and 3.27, respectively, 
for the estimates of β0, β1, β2, RSE, R2, VIF, and CN. 
Visually, it was observed that, with the increase in the 
number of plants, the mean of the 3,000 estimates of 
the assessed parameters stabilizes and approaches the 
averages obtained with the 6,340 plants. This suggests 
a possible bias in the estimates of the mean in the case 

of sample insufficiency. A similar result was also 
presented graphically by Toebe et al. (2017) for the 
estimate of the direct effect of ear insertion height on 
corn grain yield, using the path analysis.

The highest amplitude was observed for the 
confidence interval of the β0, β1, β2, RSE, R2, VIF, 
and CN from 10 plants, when compared with 1,000 
plants. Therefore, with 10 plants, the estimates of the 
parameters of the model were less accurate, which 
may result in inaccurate estimates of grain yield and 
in bias when the sample is insufficient. Therefore, it 
can be inferred that models fitted from a small number 

Table 1. Mean, median, minimum, maximum, standard deviation (SD), coefficient of variation (CV), skewness, and kurtosis 
of three traits measured in corn (Zea mays) hybrids, as well as Pearson’s linear correlation matrix between traits.

Traits(1) Mean Median Minimum Maximum SD CV (%) Skewness Kurtosis Correlation(1)

X1 X2 Y

P32R21 single-cross hybrid (n=361 plants) in the 2008/2009 crop year

X1 146.66 148.00 56 211 29.79 20.31 -0.42 0.04 1.00 0.56 0.78

X2 48.10 49.00 31 56 4.14 8.60 -1.18 1.71 0.56 1.00 0.83

Y 131.44 135.00 2 276 55.84 42.48 -0.08 -0.37 0.78 0.83 1.00

DKB566 three-way cross hybrid (n=373 plants) in the 2008/2009 crop year

X1 157.74 162.00 50 226 26.34 16.70 -0.84 1.55 1.00 0.66 0.83

X2 46.44 47.00 30 55 4.02 8.67 -1.03 1.99 0.66 1.00 0.83

Y 153.25 155.00 2 273 54.45 35.53 -0.42 -0.13 0.83 0.83 1.00

DKB747 double-cross hybrid (n=416 plants) in the 2008/2009 crop year

X1 165.62 171.00 55 226 31.26 18.87 -0.68 0.42 1.00 0.61 0.84

X2 45.56 46.00 31 54 3.52 7.73 -0.72 1.31 0.61 1.00 0.81

Y 144.85 149.00 10 259 46.15 31.86 -0.42 0.00 0.84 0.81 1.00

30F53 single-cross hybrid (n=1,777 plants) in the 2009/2010 crop year

X1 147.95 152.00 40 221 31.80 21.49 -0.48 -0.04 1.00 0.76 0.91

X2 42.74 43.00 17 53 4.28 10.02 -1.13 2.39 0.76 1.00 0.86

Y 115.68 117.00 2 249 44.16 38.18 -0.15 -0.36 0.91 0.86 1.00

DKB566 three-way cross hybrid (n=1,693 plants) in the 2009/2010 crop year

X1 154.61 157.00 40 250 27.87 18.03 -0.71 1.05 1.00 0.62 0.77

X2 41.24 42.00 18 52 4.90 11.89 -1.24 2.42 0.62 1.00 0.86

Y 116.62 121.00 2 245 48.49 41.58 -0.24 -0.51 0.77 0.86 1.00

DKB747 double-cross hybrid (n=1,720 plants) in the 2009/2010 crop year

X1 158.66 163.00 28 281 41.80 26.35 -0.34 -0.19 1.00 0.62 0.77

X2 39.05 40.00 15 51 4.78 12.23 -0.98 1.85 0.62 1.00 0.82

Y 86.37 87.00 2 219 40.52 46.91 0.02 -0.49 0.77 0.82 1.00

Overall (n=6,340 plants)

X1 154.29 157.00 28 281 33.89 21.96 -0.40 0.35 1.00 0.53 0.71

X2 42.05 43.00 15 56 5.22 12.41 -0.79 1.44 0.53 1.00 0.84

Y 113.00 114.00 2 276 49.89 44.15 0.02 -0.40 0.71 0.84 1.00
(1)X1, ear length, in millimeters; X2, ear diameter, in millimeters; and Y, grain yield, in grams per plant.



6 A. Cargnelutti Filho & M. Toebe

Pesq. agropec. bras., Brasília, v.55, e01400, 2020
DOI: 10.1590/S1678-3921.pab2020.v55.01400

0

200

400

600

800

1,000

1,200

1,400
Minimum = 28

Mean = 154.29

Median = 157.00

Maximum = 281

SD = 33.89

CV (%) = 21.96

N
u
m

b
er

 o
f 

p
la

n
ts

2
8
.0

4
3
.8

5
9
.6

7
5
.4

9
1
.3

1
0
7
.1

1
2
2
.9

1
3
8
.7

1
5
4
.5

1
7
0
.3

1
8
6
.1

2
0
1
.9

2
1
7
.8

2
3
3
.6

2
4
9
.4

2
6
5
.2

2
8
1
.0

Ear lenght (mm) Ear lenght (mm)

0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

2
6
0

2
8
0

3
0
0

2
0

0

50

100

150

200

250

300

Minimum = 15

Mean = 42.05

Median = 43.00

Maximum = 56

SD = 5.22

CV (%) = 12.41

0

600

800

1,000

1,200

1,400

1,600

1,800

400

200

1
5
.0

1
7
.6

2
0
.1

2
2
.7

2
5
.3

2
7
.8

3
0
.4

3
2
.9

3
5
.5

3
8
.1

4
0
.6

4
3
.2

4
5
.8

4
8
.3

5
0
.9

5
3
.4

5
6
.0

Ear diameter (mm)

N
u
m

b
er

 o
f 

p
la

n
ts

0

50

100

150

200

250

300

G
ra

in
 y

ie
ld

 (
g
 p

er
 p

la
n
t)

G
ra

in
 y

ie
ld

 (
g
 p

er
 p

la
n
t)

1
0

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

1
5

Ear diameter (mm)

Minimum = 2

Mean = 113.00

Median = 114.00

Maximum = 276

SD = 49.89

CV (%) = 44.15

2
.0

1
9
.1

3
6
.3

5
3
.4

7
0
.5

8
7
.6

1
0
4
.8

1
2
1
.9

1
3
9
.0

1
5
6
.1

1
7
3
.3

1
9
0
.4

2
0
7
.5

2
2
4
.6

2
4
1
.8

2
5
8
.9

2
7
6
.0

Grain yield (g per plant)

0

300

400

500

600

700

800

900

200

100

N
u
m

b
er

 o
f 

p
la

n
ts

1
0

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

1
5

Ear diameter (mm)

300
280

260

240

220

200

180
160

140

120

100

80

60

40

20
0

E
ar

 l
en

g
th

 (
m

m
)

Figure 1. Frequency histograms (on the left side) and scatterplots (on the right side) of the three evaluated traits measured in 
6,340 corn (Zea mays) hybrid plants. In histograms, the line represents the normal distribution curve. The 6,340 plants are 
composed of 361 P32R21 hybrids, 373 DKB566 hybrids, and 416 DKB747 hybrids in the 2008/2009 crop year; and of 1,777 
30F53 hybrids, 1,693 DKB566 hybrids, and 1,720 DKB747 hybrids in the 2009/2010 crop year. SD, standard deviation; and 
CV, coefficient of variation.
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Table 2. Amplitude of the 95% confidence interval (ACIi) and accuracy gain (AGi, %) of the estimates of the β0, β1, and 
β2 parameters of the multiple regression model for grain yield (Y, g per plant) as a function of ear length (X1, mm) and ear 
diameter (X2, mm), as well as residual standard error (RSE), coefficient of determination (R2), variance inflation factor 
(VIF), and condition number (CN) between the explanatory traits of the model (X1 and X2), considering sample sizes of 10 
to 1,000 corn (Zea mays) plants of the P32R21, DKB566, and DKB747 hybrids in the 2008/2009 crop year and of the 30F53, 
DKB566, and DKB747 hybrids in the 2009/2010 crop year.

Plants β0 β1 β2 RSE R2 VIF CN

ACIi AGi
(1) ACIi AGi ACIi AGi ACIi AGi ACIi AGi ACIi AGi ACIi AGi

10 329.86 - 1.33 - 8.77 - 25.86 - 0.43 - 4.16 - 17.49 -

30 182.82 44.58 0.71 46.91 4.84 44.77 15.13 41.50 0.25 41.32 1.55 62.73 6.81 61.05

50 143.35 56.54 0.52 60.99 3.81 56.54 11.71 54.70 0.20 53.36 1.02 75.44 4.50 74.25

70 118.90 63.95 0.43 67.46 3.19 63.64 9.99 61.37 0.16 62.65 0.90 78.29 3.97 77.28

90 105.20 68.11 0.39 70.90 2.79 68.14 8.91 65.54 0.16 63.81 0.76 81.62 3.37 80.72

110 93.92 71.53 0.35 73.98 2.45 72.02 7.79 69.86 0.13 69.35 0.67 83.88 2.96 83.06

130 86.10 73.90 0.31 76.48 2.29 73.83 7.27 71.88 0.12 71.30 0.60 85.51 2.66 84.78

150 82.28 75.06 0.29 78.22 2.15 75.48 6.61 74.42 0.12 73.00 0.57 86.27 2.53 85.53

170 74.95 77.28 0.27 79.69 2.05 76.59 6.39 75.27 0.11 75.37 0.54 86.93 2.40 86.30

190 72.58 78.00 0.26 80.62 1.89 78.42 5.99 76.82 0.11 75.72 0.51 87.72 2.26 87.11

210 70.57 78.61 0.24 81.65 1.84 78.97 6.02 76.70 0.10 77.31 0.48 88.34 2.14 87.77

230 68.26 79.31 0.23 82.44 1.75 80.04 5.63 78.21 0.09 78.42 0.46 88.99 2.02 88.46

250 61.69 81.30 0.23 82.72 1.63 81.36 5.18 79.98 0.09 79.71 0.44 89.42 1.94 88.92

270 60.85 81.55 0.21 83.92 1.57 82.13 5.16 80.05 0.09 80.18 0.42 89.92 1.85 89.40

290 59.45 81.98 0.21 84.19 1.57 82.13 4.91 81.01 0.08 80.89 0.39 90.52 1.74 90.06

310 56.11 82.99 0.20 85.03 1.51 82.76 4.71 81.78 0.08 82.07 0.40 90.49 1.74 90.03

330 57.05 82.70 0.20 85.20 1.45 83.40 4.56 82.38 0.08 81.82 0.38 90.76 1.70 90.31

350 53.62 83.74 0.19 85.51 1.41 83.93 4.48 82.69 0.07 83.05 0.37 91.20 1.61 90.78

370 51.31 84.45 0.19 85.77 1.36 84.48 4.32 83.29 0.07 82.73 0.37 91.11 1.63 90.67

390 50.50 84.69 0.19 86.12 1.30 85.14 4.31 83.33 0.07 82.76 0.36 91.37 1.58 90.95

410 51.43 84.41 0.18 86.86 1.30 85.21 4.20 83.77 0.07 83.66 0.35 91.69 1.53 91.27

430 48.05 85.43 0.17 87.34 1.27 85.57 3.95 84.73 0.07 84.07 0.33 92.09 1.45 91.70

450 48.36 85.34 0.17 87.09 1.26 85.67 3.92 84.86 0.07 84.47 0.33 92.08 1.45 91.69

470 46.05 86.04 0.17 87.52 1.19 86.46 3.91 84.90 0.07 84.56 0.30 92.72 1.34 92.35

490 46.84 85.80 0.16 87.87 1.22 86.06 3.82 85.24 0.06 85.51 0.32 92.22 1.43 91.84

510 43.12 86.93 0.16 88.21 1.14 87.01 3.68 85.78 0.06 85.32 0.31 92.62 1.35 92.26

530 43.88 86.70 0.16 88.33 1.17 86.70 3.66 85.83 0.06 85.74 0.30 92.81 1.32 92.46

550 44.12 86.62 0.15 88.54 1.15 86.89 3.48 86.54 0.06 86.47 0.29 92.95 1.29 92.60

570 41.78 87.33 0.15 88.93 1.12 87.25 3.49 86.52 0.06 86.47 0.28 93.16 1.26 92.82

590 40.60 87.69 0.15 88.74 1.08 87.64 3.34 87.08 0.06 86.51 0.29 92.95 1.29 92.62

610 40.83 87.62 0.15 89.11 1.06 87.95 3.43 86.75 0.06 86.51 0.29 93.09 1.27 92.75

630 40.48 87.73 0.14 89.56 1.03 88.20 3.28 87.31 0.06 86.97 0.27 93.57 1.18 93.25

650 40.77 87.64 0.14 89.24 1.05 88.06 3.32 87.18 0.06 87.06 0.27 93.55 1.18 93.24

670 38.91 88.20 0.14 89.52 1.03 88.21 3.19 87.67 0.05 87.65 0.27 93.39 1.21 93.07

690 38.10 88.45 0.14 89.79 0.97 88.93 3.13 87.90 0.05 87.62 0.26 93.82 1.13 93.52

710 38.25 88.40 0.13 90.00 1.00 88.57 3.16 87.79 0.05 87.83 0.26 93.75 1.15 93.43

730 36.38 88.97 0.13 89.89 0.98 88.82 3.08 88.10 0.05 87.92 0.25 93.95 1.11 93.66

750 35.38 89.27 0.13 90.08 0.96 89.10 3.05 88.20 0.05 87.85 0.24 94.18 1.07 93.89

Continuation...
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of plants should not be used in studies of grain yield 
prediction, showing the importance and need to set the 
reference sample size for precise model adjustments.

The ACI of the estimates of β0, β1, β2, RSE, R2, VIF, 
and CN decreased gradually with the increase in the 
number of plants (Table 2 and Figure 2). This result 
was expected and indicates that increasing the number 
of plants improves the accuracy of estimates and, 
consequently, the reliability of the models, as already 
verified for Pearson’s linear correlations (Toebe et al., 
2015) and the path analysis (Toebe et al., 2017) in corn. 
However, a sharp decrease in the ACI to approximately 
260 plants was also observed (Figure 2), becoming less 
marked afterwards, which indicates that measuring 
more plants would result in inexpressive benefits in 
the accuracy of model parameter estimates. Therefore, 
for the estimates of β0, β1, β2, RSE, R2, VIF, and CN, 
it can be suggested visually that 260 plants would 
be sufficient to fit the multiple regression model. In 
other bi- and multivariate techniques, the variability 
of sample size was considered a function of the 
magnitude of associations and of combinations of 
variables, years, hybrids, and pre-established levels of 
precision. Toebe et al. (2015) recommended from 120 
to 375 plants, depending on the level of precision, for 
the estimation of Pearson’s linear correlations in corn 
harvest and hybrids. Toebe et al. (2017) suggested 10 
to 530 plants to estimate the direct effects of the path 

analysis, depending on the type of hybrid, harvest, 
scenario, path analysis, and explanatory variable.

In multiple linear regression, according to 
Knofczynski & Mundfrom (2008), the sample size 
increased more quickly for models with larger numbers 
of predictor variables than for those with fewer 
predictor variables, as the squared multiple correlation 
coefficient decreased. The authors also concluded that 
the sample size for an excellent prediction level and two 
predictor variables ranged from 15 to 950 observations, 
depending on the population squared multiple 
correlation coefficients. Boutilier et al. (2016), testing 
four statistical models, recommended more than 200 
samples to achieve consistent model predictions for all 
metrics. Bujang et al. (2017) suggested 300 or more 
subjects to generate an approximation of estimates 
with parameters. The sample sizes recommended by 
Boutilier et al. (2016) and Bujang et al. (2017) were 
similar to those obtained in the present work. Riley et 
al. (2019) suggested at least 36.7 subjects per predictor 
parameter, whereas Kelley (2008) found the need for 
up to 3,653 observations in multiple linear regression, 
depending on the effect of the population squared 
multiple correlation coefficient, desired confidence 
interval width, and number of variables.

When increasing the number of plants from 10 to 30, 
there were accuracy gains of 44.58, 46.91, 44.77, 41.50, 
41.32, 62.73, and 61.05% for the estimates of β0, β1, β2, 

Table 2. Continuation...

Plants β0 β1 β2 RSE R2 VIF CN

ACIi AGi
(1) ACIi AGi ACIi AGi ACIi AGi ACIi AGi ACIi AGi ACIi AGi

770 35.40 89.27 0.13 90.25 0.94 89.30 3.02 88.34 0.05 87.79 0.25 94.09 1.08 93.80

790 34.99 89.39 0.13 90.49 0.92 89.49 2.92 88.72 0.05 88.66 0.24 94.20 1.06 93.92

810 34.18 89.64 0.12 90.73 0.93 89.39 2.93 88.66 0.05 88.48 0.25 94.08 1.09 93.79

830 36.10 89.06 0.12 90.68 0.91 89.56 2.91 88.73 0.05 88.47 0.23 94.38 1.03 94.09

850 35.00 89.39 0.13 90.49 0.92 89.49 2.90 88.80 0.05 88.59 0.24 94.24 1.06 93.96

870 34.15 89.65 0.12 90.91 0.92 89.52 2.83 89.04 0.05 89.29 0.23 94.36 1.03 94.09

890 34.08 89.67 0.12 90.96 0.90 89.79 2.88 88.87 0.05 89.08 0.23 94.51 1.01 94.24

910 33.48 89.85 0.12 91.25 0.88 90.01 2.79 89.20 0.05 89.04 0.22 94.62 0.99 94.35

930 33.64 89.80 0.12 91.24 0.86 90.23 2.75 89.35 0.05 89.09 0.24 94.32 1.04 94.04

950 31.48 90.46 0.11 91.41 0.85 90.32 2.72 89.49 0.05 89.29 0.23 94.49 1.01 94.22

970 31.70 90.39 0.11 91.42 0.84 90.44 2.65 89.75 0.04 89.65 0.21 94.85 0.95 94.59

990 32.29 90.21 0.11 91.57 0.84 90.47 2.56 90.12 0.05 89.47 0.22 94.78 0.96 94.52

1,000 31.87 90.34 0.11 91.65 0.81 90.75 2.72 89.49 0.05 89.47 0.22 94.71 0.97 94.45
(1)AGi = 100 - (ACIi/ACI10)×100, where ACIi is the amplitude of the 95% confidence interval of the sample sizes of 10, 30, ..., 1,000 plants, and ACI10 is 
the amplitude of the 95% confidence interval for the reference sample size of 10 plants. 
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Figure 2. 2.5% percentile, 97.5% percentile, and mean (on the left Y-axis), as well as accuracy gain (on the right Y-axis) for 
3,000 estimates of parameters β0, β1, β2, RSE, R2, VIF, and CN in the 2008/2009 and 2099/2010 crop years. On the X-axis, 
the number of corn plants ranges from 10 to 1,000. Plants of the P32R21, DKB566, and DKB747 hybrids were evaluated in 
the 2008/2009 crop year, and of the 30F53, DKB566, and DKB747 hybrids in the 2009/2010 crop year. β0, β1, β2, regression 
parameters; RSE, residual standard error; R2, coefficient of determination; VIF, variance inflation factor; and CN, condition 
number.
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RSE, R2, VIF, and CN, respectively (Table 2). From 10 
to 50 plants, the gains in accuracy were, respectively, 
56.54, 60.99, 56.54, 54.70, 53.36, 75.44, and 74.25%. 
Therefore, accuracy gains, with the increase in the 
number of plants, were of similar magnitudes for the 
estimates of β0, β1, β2, RSE, and R2, and relatively 
superior for those of VIF and CN.

In addition, gains in accuracy were more expressive 
from 10 to 30 plants than from 30 to 50 plants, and 
so on, successively (Figure 2). Gains over 80% (β0 = 
81.63%; β1 = 82.89%; β2 = 81.90%; RSE = 80.05%; 
R2 = 80.24%; VIF = 89.70%; and CN = 89.19%) were 
obtained for 10 to 261 plants. Although estimates from 
the largest possible number of plants should be sought 
in order to ensure reliable models, the obtained results 
are indicative that the studied model parameters may 
be estimated with 260 corn plants; however, from this 
number of plants, accuracy gains were inexpressive. 
Sample sizes (number of leaves) similar to this one were 
recommended for the adjustment of leaf area models: 
200 leaves by Antunes et al. (2008) for two species of 
coffee, 415 leaves by Pompelli et al. (2012) for physic 
nut, 200 leaves by Cargnelutti Filho et al. (2015) for 
jack bean, and 240 leaves by Cargnelutti Filho et al. 
(2018) for velvet bean. In this sense, it is important 
to recommend sample sizes that can be evaluated, 
because, as already shown by Toebe et al. (2015, 2017), 
Kelley (2008) and Knofczynski & Mundfrom (2008), 
in situations of excellent prediction level, in general, 
impractical sample sizes (n > 1,000) are necessary.

Models adjusted from small samples – less than 
260 plants in the present study – should be avoided 
due to the imprecision of the obtained estimates, 
whereas those  adjusted from larger samples – equal 
to or greater than 260 plants – should be encouraged. 
It should be noted that, from a given sample size 
(number of plants), gains are negligible in relation to 
the costs for measuring plant traits. Considering the 
obtained results and the inferences mentioned above, it 
is reasonable to accept that 260 plants are sufficient to 
adjust corn grain yield (Y) as a function of ear length 
(X1) and ear diameter (X2) by the multiple regression 
model Y = β0 + β1X1 + β2X2.

Conclusions

1. Measuring 260 plants is sufficient to adjust 
precise multiple regression models of corn (Zea mays) 

grain yield (Y, in g per plant) as a function of ear length 
(X1, in mm) and ear diameter (X2, in mm).

2. The model Y = -229.76 + 0.54X1 + 6.16X2 is a 
reference for estimating corn grain yield.
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