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Genetics/ Original Article

Kohonen’s self-organizing 
maps for the study of genetic 
dissimilarity among soybean 
cultivars and genotypes
Abstract − The objective of this work was to evaluate the genetic dissimilarity 
between soybean cultivars and genotypes for the selection of parents, as 
well as to propose a new method for using Kohonen’s self-organizing maps 
(SOMs) and to test its efficiency through Anderson’s discriminant analysis. 
The morphoagronomic descriptors of soybean cultivars and genotypes were 
evaluated. For data analysis, SOM-type artificial neural networks were 
used. The proposed method allowed the determination of the best network 
architecture in a nonsubjective way. Furthermore, at the beginning of training, 
it was possible to mitigate the randomness effect of the synaptic weights on 
the formed clusters. Six dissimilar clusters were formed; therefore, there is 
genetic dissimilarity between soybean cultivars and genotypes. Cultivars 
C25, C8, and C13 can be combined with C36, C31, C32, and C33 because 
they show good yield-related attributes and high dissimilarity. The proposed 
methodology is advantageous in comparison with the use of traditional SOMs, 
besides being efficient due to clustering consistency according to Anderson’s 
discriminant analysis. 

Index terms: Glycine max, artificial neural networks, multivariate analysis, 
plant breeding. 

Mapas auto-organizáveis de Kohonen 
no estudo da dissimilaridade genética 
entre cultivares e genótipos de soja
Resumo − O objetivo deste trabalho foi avaliar a dissimilaridade genética entre 
cultivares e genótipos de soja para a seleção de genitores, bem como propor um 
novo método para a utilização de mapas auto-organizáveis de Kohonen (SOMs) 
e testar sua eficiência por meio da análise discriminante de Anderson. Foram 
avaliados os descritores morfoagronômicos de cultivares e genótipos de soja. 
Para análise dos dados, utilizaram-se redes neurais artificiais do tipo SOM. 
O método proposto permitiu a determinação da melhor arquitetura de rede de 
forma não subjetiva. Além disso, no início do treinamento, foi possível mitigar 
o efeito da aleatoriedade dos pesos sinápticos sobre os grupos formados. Foram 
formados seis grupos dissimilares; portanto, há dissimilaridade genética entre 
cultivares e genótipos de soja. As cultivares C25, C8 e C13 podem ser combinadas 
com as C36, C31, C32 e C33, por apresentarem bons atributos de produtividade 
e alta dissimilaridade. A metodologia proposta é vantajosa em comparação 
ao uso de SOMs tradicionais e se mostrou eficiente devido à consistência dos 
agrupamentos de acordo com a análise discriminante de Anderson.

Termos para indexação: Glycine max, redes neurais artificiais, análise 
multivariada, melhoramento genético vegetal. 
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Introduction

Among plants of global economic importance, which 
are the targets of improvement programs, soybean 
[Glycine max (L.) Merrill] stands out for its worldwide 
production − 362.947 million tonnes and 127,842 million 
ha planted area −, in the 2020/2021 harvest (USDA, 
2021). Efforts are focused on the increasing of soybean 
production through genetic improvement, to maintain 
Brazil as the world’s largest producer of this crop.

However, the selection of superior individuals is 
not an easy task, and divergent parents with good 
performance per se should be used. Genetic diversity 
studies have been often carried out using traditional 
multivariate techniques, such as dendrograms (Arief 
et al., 2017), principal components (Hamawaki et al., 
2012), and canonical variables (Vendruscolo et al., 
2020). However, there is the possibility of carrying 
out these studies through computational intelligence, 
using artificial neural networks (ANNs) (Ferreira et 
al., 2018). The main advantages of ANNs are their 
nonparametric approach, tolerance to data loss, and the 
dispensability of detailed information on the modeled 
system, such as design and genealogies (Silva, et al., 
2014; Azevedo et al., 2017).

Among the ANN techniques are the self-organizing 
maps (SOMs), developed by Teuvo Kohonen, in 1982 
(Kohonen, 1982). SOMs are a type of artificial neural 
network trained by unsupervised competitive learning 
(Kohonen, 2001). Currently, SOMs are considered an 
essential tool in multivariate statistics, in the context 
of computational intelligence, as its algorithm is able 
to organize dimensionally complex data into groups 
according to their similarities (Kohonen, 1982).

SOMs have been effectively used to perform many 
tasks, which include genetic dissimilarity studies, 
among others. However, the network topology is 
usually selected in subjective way. Furthermore, at the 
beginning of the iterative process of SOM networks, 
synaptic weights are random, which can lead to 
different results for the same data set and network 
configuration. This can lead to discrediting this 
method which, therefore, requires the implementation 
of strategies to correct this problem.

The objective of this work was to evaluate the 
genetic dissimilarity between soybean cultivars and 
genotypes, in order to select parents, and propose a 
new method of using SOMs and test their efficiency 
through Anderson’s discriminant analysis. 

Materials and Methods

The experiment was carried out from February to 
July 2017, in the experimental area of the Instituto de 
Ciências Agrárias (ICA) of the Universidade Federal 
de Minas Gerais (UFMG), regional campus of Montes 
Claros county, in the state of Minas Gerais, Brazil. The 
experimental area is located between 16º51'00"S and 
44º55'00"W, at 630 m altitude, and its soil is mostly 
classified as Cambisol (Santos et al., 2018). According 
to the Köppen-Geiger’s classification, the climate in 
the region is Aw (wet tropical), with dry winter and 
rainy summer. During the experimental period, the 
annual means were 24.35°C for temperature and 
264.90 mm rainfall. 

Using a simple lattice design, 36 soybean cultivars 
and genotypes were evaluated (Table 1), with two 
replicates and 40 plants per plot, out of which 15 
randomly selected plants were analyzed. The sowing 
lines were 5 m long with 0.5 m spacing apart.

In the phenotypic characterization process, 11 
quantitative descriptors were analyzed in each plant, 
as follows: hypocotyl length (HL, mm), measured 
from the soil surface to the cotyledonary node, using a 
digital caliper, at the V2 stage; hypocotyl diameter (HD, 
mm), using a digital caliper, at the V2 stage; length of 
cotyledons 1 and 2 (LC1/LC2, mm) measured from 
the insertion of the cotyledon in the main stem to its 
end, using a digital caliper, at the V2 stage; epicotyl 
length (EL, mm) measured from the cotyledonary 
node to the nodes of the unifoliolate leaves, using a 
digital caliper, at the V3 stage; length of the petiole of 
the first trifoliate leaf (LPTL, mm) measured from 
the insertion of the petiole on the main stem to the 
insertion of the two lateral leaflets of the trifoliate 
leaf, using a digital caliper, at the V3 stage; length of 
the central leaflet rachis of the first trifoliate leaf (LR, 
mm) measured from the junction of the two lateral 
leaflets to the insertion of the terminal leaflet, using 
a digital caliper, at the V3 stage; plant height (PH, cm) 
obtained from the distance from ground level to the 
apical end of the plant, using a measuring tape, at the 
R8 stage; height of insertion of the lowest pod (HILP, 
cm) obtained by the distance from the ground level 
to the first pod of the plant, using a measuring tape, 
at the R8 stage; number of pods (NP) counted in each 
evaluated plant, for which only pods with seed were 
considered; seed weight (SW, g), using an analytical 
digital scale.
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In order to select the best network architecture, 1,000 
training sessions were performed for each combination 
and, for each combination, the average hit rate was 
estimated by Anderson’s discriminant analysis and 
the smallest number of empty clusters. Subsequently, 
the best network architecture was selected (that with 
the highest average hit rate and the lowest number of 
empty clusters).

Anderson’s discriminant analysis method was 
performed as described by Cruz et al. (2014), and 
the average hit rate was estimated by the relationship 
between the number of erroneous classifications and 
the total number of classifications.

After selecting the best network topology, 
10,000 new training sessions were carried out and, 
subsequently, a dissimilarity matrix was built. To 
estimate the dissimilarity between cultivars and 
genotypes, the frequency at which the lines (two by 
two) were grouped into distinct neurons was estimated.

The unweighted pair group method (UPGMA) was 
applied to obtain a dendrogram, using the arithmetic 
averages from the dissimilarity matrix. The number of 
groups stablished in the dendrogram was based on the 
number of neurons in the best network topology. The 
consistency of the cluster was verified by Anderson’s 
discriminant analysis.

The analyses were performed using the R software 
(R Core Team, 2016). For the use of SOM networks, 
we applied the RSNNS package (Bergmeir & Benitez, 
2012). To obtain the dendrogram, the hclust function 
was employed and, for the representation of the 
dissimilarity matrix and the normalized means, the 
corrplot package was used (Wei & Simko, 2021).

Results and Discussion

The best network architecture was found using 
three rows and two columns (Figure 1). For this 
configuration, more than 99% of accuracy was found 
by Anderson’s discriminant analysis, and 0% empty 
clusters.

To select the best network architecture, six neurons 
(three rows and two columns) can be used, therefore, 
the setting number of clusters equals 6. Kohonen (2001) 
emphasizes that the determination of the number of 
neurons and parameters of learning is an empirical 
process, based on the user’s experience and trial and 
error methods. Several studies using SOMs defined 

Table 1. Trade names and codes of 36 soybean (Glycine 
max) cultivars and genotypes evaluated at the Instituto de 
Ciências Agrárias of Universidade Federal de Minas Gerais, 
Montes Claros, MG, Brazil.

Code(1) Trade name Maintainer
C1 97R21 DuPont Pioneer 
C2 97R73 DuPont Pioneer 
C3 98Y12 DuPont Pioneer 
C4 98Y30 DuPont Pioneer 
C5 99R03 DuPont Pioneer 
C6 99R09 DuPont Pioneer 
C7 AS 3610IPRO Agroeste
C8 AS 3730IPRO Agroeste
G9 BMXDESAFIO Brasmax
G10 BMXPontaIPRO Brasmax
C11 BMX Potência RR Brasmax
C12 CD 2720IPRO Coodetec
C13 CD 2728IPRO Coodetec
C14 CD 2730IPRO Coodetec
C15 CD 2737RR Coodetec
C16 CD 2750IPRO Coodetec
C17 CD 2817IPRO Coodetec
G18 DM6563RSFIPRO DONMARIO
C19 DS5916IPRO Dow AgroSciences
C20 M5947IPRO Monsoy
C21 M6210IPRO Monsoy
C22 M6410IPRO Monsoy
C23 M7110IPRO Monsoy
C24 M7739IPRO Monsoy
C25 M8210IPRO Monsoy
C26 NA 5909 RG Nidera
C27 NS 5959 IPRO Nidera
G28 NS6906IPRO Nidera
C29 NS 6909 IPRO Nidera
C30 NS 7000 IPRO Nidera
C31 NS 7209 IPRO Nidera
C32 NS 7300 IPRO Nidera
C33 NS 7338 IPRO Nidera
C34 TMG 7062 IPRO TMG
C35 RK6813 RR GDM
C36 RK7814IPRO Monsoy

(1)C, cultivar; G, genotype. Information on the cultivars was collected from 
the Registro Nacional de Cultivares (RNC), published by the Brazilian 
Ministry of Agriculture, Livestock and Food Supply (Ministério da 
Agricultura, Pecuária e Abastecimento, MAPA) (Brasil, 2021). 

For data analysis, SOM-type artificial neural 
networks were used to study the genetic dissimilarity 
between cultivars and genotypes. The analysis 
was based on standardized data. Different network 
architectures were tested by varying the number 
of lines (1 to 5) and columns (1 to 5), totaling 24 
configurations (excluding the combination with one 
row and one column).
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their topology by trial or at random (Chaudhary et 
al., 2014). Therefore, the proposed method to find the 
best network architecture is very important, since, in 
the traditional method, for each time SOMs are used, 
they can present different results because the networks 
have random synaptic weights at the beginning of the 
training. In addition, it prevents the setting (number of 
rows and columns) from being subjectively selected.

After choosing the best network architecture, the 
dissimilarity matrix was obtained and graphically 
represented (Figure 2). The lighter colors indicate less 
distance between the genotypes, that is, they are more 
similar to each other, while darker colors indicate that the 
genotypes are more dissimilar (they are farther apart). 

The most genotypes were observed as distant 
from each other, that means that they are dissimilar, 
indicating the presence of high genetic variability. Thus, 
the shorter the distance, the more similar the genetic 
or parental individuals. This was noticed among some 
materials from the same company, such as the C2, C3, 
C5, and C6 cultivars from DuPont Pioneer; C15, C16, 
and C17 cultivars from Coodetec; and C31, C32, and 
C33 cultivars from Nidera. Therefore, artificial crosses 
between these genotypes are not recommended. 

The quantification of genetic dissimilarity existing 
between individuals generates information on the 

degree of similarity, or difference between genotypes, 
which allows of the formation of heterotic groups 
(by grouping methods) that are essential when 
choosing parents with good genetic complementarity 
(Lima & Peluzio, 2015). Hence, the evaluation of 
genetic diversity is essential in breeding programs, 
as it makes it possible the optimization of parental 
selection and, consequently, the prediction of the best 
hybrid combinations. However, in addition to being 
dissimilar, it is necessary that parents associate high 
means and variability in the characteristics that are 
being improved (Ferreira et al., 2018).

The dendrogram obtained by UPGMA from the 
dissimilarity matrix shows the formation of heterotic 
groups, which means that there is genetic diversity 
among the genotypes, and 0.95 cophenetic correlation 
coefficient was obtained, indicating a good fit of the 
dendrogram (Figure 3). This coefficient is used to 
assess the consistency of the clustering pattern (Ayed 
et al., 2016). For the analysis of the dendrogram, 
considering the pre-set number of six clusters, a cut 
was made at 60% of the distance.

Cluster I is composed of the cultivars C3, C6, C5, 
C2, C16, C15, and C17; cluster II is composed of C14, 
C25, C8, and C13; cluster III is composed of C1, C23, 
C12, G9, and C24; cluster IV is composed of C34, C4, 
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Figure 1. Average percentage of correct classifications by Anderson’s discriminant analysis (A), and percentage of empty 
clusters (B), considering 24 neural network configurations by self-organizing maps (SOMs) in soybean (Glycine max) 
cultivars and genotypes cultivated in the municipality of Montes Claros, in the state of Minas Gerais, Brazil.
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C36, C31, C32, and C33; cluster V is composed of C7, 
C21, C20, C26, C27, C19, and C29; and cluster VI is 
composed of the cultivars G28, C35, G10, C30, G11, 
G18, and C22. All clusters, except for the IV, showed a 
predominance of high values for hypocotyl length and 
cotyledon length one and two (Figure 3). High values 
for hypocotyl diameter were also observed. Groups 
IV, V, and VI showed lower values for epicotyl length, 
length of petiole of the first trifoliate leaf, rachis 

length, plant height and height of insertion of the 
lowest pod. In contrast, groups II, IV, and V showed 
higher values for weight and number of pods, which 
are characteristics that define the production. 

According to Val et al. (2014), the measurement 
of agronomic characteristics of the crop, such as the 
height of insertion of the lowest pod, plant height, and 
number of pods is important for allowing the breeder 

 Figure 2. Dissimilarity matrix graphic representation obtained by Kohonen’s self-organizing maps (SOMs) for 36 cultivars 
and genotypes (see Table 1) of soybean (Glycine max) cultivated in the municipality of Montes Claros, in the state of Minas 
Gerais, Brazil.
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to identify and select the best genotypes for characters 
of great agronomic importance. 

The distances between the six formed clusters 
showed the following values: the maximum inter-
cluster distance (0.999) occurred between clusters 

I and V; cluster II was farther from the IV (0.994); 
cluster III was farther from the IV (0.977); cluster VI 
was farther from the II (D = 0.981); and the minimum 
inter-cluster distance (0.667) was observed between 
groups II and III (Table 2). Genotypes belonging to 

Figure 3. Dendrogram constructed by the UPGMA method from the complement coincidence matrix of 36 cultivars 
and genotypes (see Table 1) grouped by SOM-type networks, and representation of the normalized phenotypic means for 
soybean (Glycine max) cultivated in the municipality of Montes Claros, in the state of Minas Gerais, Brazil. Parameters: DH, 
hypocotyl diameter; HL, hypocotyl length; CC1/CC2, length of cotyledons 1 and 2; EL, epicotyl length; LPTL, length of 
the petiole of the first trifoliate leaf; LR, length of the rachis of the central leaflet of the first trifoliate leaf; PH, plant height; 
HILP, height of insertion of the lowest pod; NP, number of pods; and SW, seed weight. 

Table 2. Average distances within (main diagonal) and between (off diagonal) clusters based on the dissimilarity matrix 
obtained by Kohonen’s self-organizing map neural networks for soybean (Glycine max) cultivars and genotypes cultivated 
in the municipality of Montes Claros, in the state of Minas Gerais, Brazil.
Cluster I II III IV V VI
I 0.144 0.892 0.953 0.976 0.999 0.951
II 0.892 0.231 0.667 0.994 0.942 0.981
III 0.953 0.667 0.303 0.977 0.939 0.884
IV 0.976 0.994 0.977 0.219 0.914 0.943
V 0.999 0.942 0.939 0.914 0.256 0.870
VI 0.951 0.981 0.884 0.943 0.870 0.382
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the most distant clusters can be used in hybridization 
programs, to obtain a wide spectrum of variation 
among segregants. The greater is the divergence 
between genotypes, the greater will be the heterosis of 
hybrids in a breeding program in the development of 
higher yielding varieties (Bekele et al., 2012). Within 
this context, cultivars from clusters II (C14, C25, C8, 
and C13) and IV (C34, C4, C36, C31, C32, and C33) 
can be selected as parents in hybridization programs, 
as they are genetically distant and have good yield-
related attributes such as number and weight of pods 
(Figure 3). 

The use of artificial neural networks as a clustering 
method is a promising path. Ferreira et al. (2018) 
concluded that SOM networks can provide more 
valuable results when compared to the traditional 
cluster analysis. 

To verify the adequacy of the clusters obtained by 
the SOMs network method, we applied Anderson’s 
discriminant analysis; the results provided by the 
method show that the accesses were 100% correctly 
classified in the clusters. 

The use of Anderson’s discriminant analysis is 
considered viable to verify the clustering consistency 
proposed by the technique of neural networks (Barbosa 
et al., 2011). In addition, Anderson’s discriminant 
function proved to have a great potential and to be 
an additional tool to check the correct classification 
provided by the various methods of multivariate 
analysis (Sudré et al., 2006).

Conclusions

1. There is genetic dissimilarity between soybean 
cultivars and genotypes, and the cultivars M8210IPRO, 
AS 3730IPRO, and CD 2728IPRO, in the cluster II, 
can be combined with RK7814IPRO, NS 7209 IPRO, 
NS 7300 IPRO, and NS 7338 IPRO, in the cluster IV 
because they show good yield-related attributes.

2. The proposed methodology is advantageous (in 
comparison with the use of traditional SOM) for its 
efficiency, as it allows of clustering consistency in a 
non-subjective way, in accordance with Anderson’s 
discriminant analysis and with the study of 
dissimilarity, without the influence of random synaptic 
weights at the beginning of training.

3. Self-organizing maps (SOMs) are efficient for the 
evaluation of genetic diversity of soybean cultivars for 
crop improvement programs.
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