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Genetics/ Original Article

Performance of four genomic 
selection methods using different 
heritability and QTL numbers
Abstract – The objective of this work was to evaluate how heritability and 
the number of quantitative trait loci (QTL) controlling the trait can influence 
the prediction of genetic value by genomic selection methods. A prediction 
equation was established to estimate genetic correlation based on phenotypic 
correlation, using an F2 population with 1,000 individuals, simulated in 
different scenarios. Heritability (5, 20, 40, 60, 80, and 99%) and QTL 
number (60, 120, 180, and 240) varied in each scenario. The following four 
genomic selection methods were used in the analyses: ridge-regression best 
linear unbiased prediction (RR-BLUP), genomic BLUP (GBLUP), Bayesian 
estimation method B (Bayes B), and reproducing kernel Hilbert spaces 
regression (RKHS). The phenotypic and genotypic predictive abilities were 
calculated for each method, and Tukey’s test was used to compare means. 
The effect of heritability and of the number of QTL controlling the trait was 
evaluated by the regression analysis. Tukey’s test revealed differences between 
the methods, with Bayes B and RR-BLUP being superior to the others in 
almost all scenarios. Heritability presents a positive linear relationship with 
phenotypic predictive ability and a positive quadratic relationship with 
genotypic predictive ability. The number of QTL controlling the trait has no 
relationship with the phenotypic and genotypic predictive abilities.

Index terms: accuracy, genome-wide selection, heritability, mixed model, QTL.

Desempenho de quatro métodos de 
seleção genômica com uso de diferentes 
herdabilidades e números de QTL
Resumo – O objetivo deste trabalho foi avaliar como a herdabilidade e o número 
de locos de características quantitativas (QTL) que controla a característica 
podem influenciar na predição do valor genético por meio de métodos de 
seleção genômica. Uma equação de predição foi estabelecida para estimar 
a correlação genética baseada na correlação fenotípica, tendo-se utilizado 
uma população F2 com 1.000 indivíduos, simulados em diferentes cenários. 
A herdabilidade (5, 20, 40, 60, 80 e 99%) e o número de QTL (60, 120, 180 
e 240) variaram em cada cenário. Os quatro seguintes métodos de seleção 
genômica foram utilizados nas análises: ridge-regression best linear unbiased 
prediction (RR-BLUP), BLUP genômico (GBLUP), método bayesiano de 
estimação B (Bayes B) e reproducing kernel Hilbert spaces regression 
(RKHS). As habilidades preditivas fenotípicas e genotípicas foram calculadas 
para cada método, e o teste de Tukey foi utilizado para comparação de médias. 
O efeito da herdabilidade e do número de QTL que controla a característica foi 
avaliado por análise de regressão. O teste de Tukey revelou diferenças entre 
os métodos, sendo que Bayes B e RR-BLUP foram superiores aos demais em 
quase todos os cenários. A herdabilidade apresenta relação linear positiva 
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com a capacidade preditiva fenotípica e relação quadrática 
positiva com a capacidade preditiva genotípica. O número 
de QTL controlando a característica não tem relação com a 
capacidade preditiva fenotípica e genotípica.

Termos para indexação: precisão, seleção genômica 
ampla, herdabilidade, modelo misto, QTL.

Introduction

Until 30 years ago, the selection of superior 
genotypes in most plant and animal breeding programs 
was based on the visual selection of individuals 
(Lichhane et al., 2022). This changed with the advent of 
molecular markers, which allowed of the incorporation 
of molecular information to improve prediction and 
selection accuracy (Lichhane et al., 2022). The first 
marker-based methodology used in breeding was the 
molecular marker-assisted selection (Xu & Croux, 
2008). However, this methodology was useful only for 
traits with quantitative trait loci (QTL) of major effect, 
being inefficient for traits controlled by minor-effect 
genes (Zhong et al., 2009; Song et al., 2023).

With the evolution and the introduction of molecular 
markers, such as single nucleotide polymorphisms and 
diversity arrays technology, new statistical models, 
known as genomic selection models, were established 
for the study of the influence of minor-effect genes 
(Meuwissen et al., 2001). These models use the effect 
of all markers available to estimate the genomic 
estimated breeding value (GEBV) of an individual.

The prediction accuracy of these models is 
influenced by several factors, such as the heritability 
of the trait and the number of genes controlling it 
(Ornella et al., 2012; Robert et al., 2022; De Mori & 
Ciprinai, 2023). According to Zhong et al. (2009) and 
Zargar et al. (2015), in genomic selection methods, 
accuracy seems to be inversely related to the number 
of QTL. For example, when estimated by Bayesian 
methods, accuracy is higher for traits controlled by 
fewer major-effect genes. Conversely, in models 
based on the best linear unbiased prediction (BLUP), 
a better performance is observed for traits controlled 
by several minor-effect genes (Meuwissen et al., 
2001; Zhong et al., 2009). Although there are studies 
comparing genomic selection methods (Heslot et al., 
2012; Bhering et al., 2015), only a few of them have 
taken heritability and the number of QTL controlling 
the trait into account (Desta & Ortiz, 2014), whereas 

none of them have considered these two factors 
simultaneously.

The objective of this work was to evaluate how 
heritability and the number of QTL controlling the 
trait can influence the prediction of genetic value by 
genomic selection methods.

Materials and Methods

For the study, an F2 population was simulated using 
the simulation module of the GENES software (Cruz, 
2013), which allowed of generating information on the 
genome, the genotypes of the parents, the controlled 
cross populations, and quantitative trait data. A 
genome consisting of 15 linkage groups, similar to 
that of a 2n = 2x = 30 diploid species, was simulated. 
Each linkage group had 200 cM, with 200 markers per 
linkage group, spaced equally at 1 cM, totaling 3,000 
markers. The markers were assumed as codominant 
and biallelic.

Contrasting homozygote parents were simulated, 
i.e., parent 1 was coded as dominant (2), and parent 2 
was coded as recessive (0) for all markers. Therefore, 
the cross between parent 1 and parent 2 generated 
the F1 population with all genes in heterozygosis. 
The simulated F2 population was coded with 0, 1, 
and 2, where 0 corresponds to recessive homozygote 
individuals, 1 to heterozygote individuals, and 2 to 
homozygote individuals for a given locus.

The F2 population was composed of 1,000 
individuals, generated from the cross-selfing of 
individuals of the F1 population. In this process, 
each individual of the F1 population produced 5,000 
gametes, and, when 2 of these gametes met at random, 
the first individual of the F2 population was generated. 
This process was repeated until all individuals of each 
population were formed.

Traits controlled by different QTL numbers (60, 
120, 180, and 240) were simulated to verify how the 
number of QTL controlling the trait could influence 
the prediction of genetic value by genomic selection 
methods.

A binomial distribution was assigned to the 
importance of each QTL, using the following equation:

QTL importance = [n! / k! (n - k)!] × pk × q(n-k)

where q=0.5; and N = n - 1, where n is the number of 
QTL. This distribution was adopted since it considers 
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that there are some more important QTL, but that these 
are not frequent and do not have major effects. This 
fact makes the simulation more realistic for the study.

The expression of each QTL was defined by:  
AA = μ + a; Aa = μ + d; aa = μ - a. Since the value of 
d was defined as null, the mean degree of dominance 
(d/a) was zero for all loci.

The genotypic value (GV) of each individual was 
established by the following equation: 

GV = ∑n
i=1(QTLi importance × QTLi expression)

The environment effect was defined as a vector 
independent of the genotypic value and was estimated 
following N(0,σ2), where σ2 is variance, whose value 
was calculated from the heritability of the traits and the 
value of genetic variance (σ2

g). The heritability value 
was previously defined. Traits with a heritability of 5, 
20, 40, 60, 80, and 99% were simulated in the present 
work, and σ2

g was calculated as the variance of the 
genotypic value of the individuals in the F2 population.

The phenotypic value (PV) was calculated as 
follows: PV = μ + GV + EV, where μ is the mean 
defined by the user (μ = 100 for the present study), and 
EV is the environmental value.

The mapping process was carried out after the 
population was generated, starting with the analysis of 
segregation of individual loci. Chi-square tests were 
applied to verify if the markers generated in the study 
segregated according to an F2 population. All linkage 
groups were checked for restoration, considering size, 
distance, and order of markers, which confirmed that 
the F2 population had the desired simulation properties.

For the analyses, the following four genomic 
selection methods, widely used in plant and animal 
breeding, were tested: ridge-regression BLUP (RR-
BLUP), genomic BLUP (GBLUP), Bayesian estimation 
method B (Bayes B), and reproducing kernel Hilbert 
spaces regression (RKHS).

RR-BLUP and Bayes B were described by 
Meuwissen et al. (2001). RR-BLUP assumes that each 
marker has a variance equal to GVar/M, where GV is 
genetic variance and M is the number of markers. In 
the Bayes B method, the priori of the proportion of 
markers associated with the phenotypic variance equal 
to zero assumes an inverted chi-square distribution.

In RKHS, the genetic values are estimated by the 
Gaussian process, and all parameters of the priori are 
described by De Los Campos et al. (2010).

For the comparison of the genomic selection 
methods, the phenotypic and genotypic predictive 
abilities were defined as Pearson’s correlation between 
the phenotypic value and the GEBV and as Pearson’s 
correlation between the true genetic value and the 
GEBV, respectively. In addition, Tukey’s test was used 
for mean comparisons, at 5% probability, for each used 
scenario.

The regression analysis (through linear, quadratic, 
and cubic regression models) was used to verify the 
influence of heritability and of the number of QTL 
controlling the trait on the prediction accuracy of 
the tested genomic selection methods, which were 
evaluated with different heritability values (5, 20, 40, 
60, 80, and 99%) and numbers of QTL simulated (60, 
120, 180, and 240).

The linear, quadratic, and cubic regression models 
were tested to predict the genetic correlation (Pearson’s 
correlation between the true genetic value and the 
GEBV) from the phenotypic correlation (Pearson’s 
correlation between the phenotypic value and the 
GEBV).

All analyses were performed using the R statistical 
software (R Core Team, 2017), as follows: RR-BLUP 
and GBLUP, with mixed.solve and kin; BLUP functions 
in the rrBLUP package; and Bayes B and RKHS using 
the BGLR function in the BGLR package. A total of 
20,000 burn-ins and 100,000 MCMC iterations were 
used in the Bayesian analysis. The convergence of 
the Bayesian models was analyzed using the variance 
parameters of the trace plot.

Results and Discussion

Significant differences were observed between 
the genomic selection methods for all heritability 
values evaluated, regardless of the number of QTL 
for the phenotypic (Table 1) and genotypic (Table 2) 
predictive abilities. In almost all evaluated scenarios, 
both the phenotypic and genotypic predictive abilities 
of GBLUP and RKHS were inferior to those of the 
other methods, whereas those of the RR-BLUP and 
Bayes B were significantly superior. For heritability 
values above 40%, the Bayes B method was superior 
to RR-BLUP.

According to the literature, the performance of a 
model is strongly influenced by interallelic interaction. 
For resistance to wheat rust, Ornella et al. (2012) found 
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that the Bayesian Lasso and Bayesian ridge regression 
presented superior results to that of the support vector 
regression, a non-parametric method as the RKHS 
used in the present study. The authors concluded that 
parametric methods, such as RR-BLUP, Bayes B, 
and GBLUP, are superior because the studied trait is 
controlled by an additive gene effect. Contrastingly, 
non-parametric methods, as RKHS, can capture non-
additive effects, such as dominance and epistasis, but 

may even decrease accuracy when the trait has an 
additive gene control, as verified by Zhao et al. (2013) 
and in the present study, where RKHS presented lower 
results in most of the evaluated scenarios. The fact 
that all traits were simulated with only the additive 
effect may have led all used methods to present similar 
results, except the non-parametric RKHS (Tables 1 
and 2). Heslot et al. (2012), working with maize (Zea 
mays L.) and barley (Hordeum vulgare L.), compared 

Table 1. Estimate of the phenotypic predictive ability with different values of heritability (h2) and numbers of quantitative 
trait loci (QTL) of the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB), 
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods(1).

Method RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB
QTL number = 60 QTL number = 120

h2 = 5% 0.04a 0.05a 0.05a 0.02b 0.16b 0.16b 0.16b 0.17a
h2 = 20% 0.37a 0.37a 0.35b 0.35b 0.34a 0.35a 0.34b 0.34b
h2 = 40% 0.56b 0.58a 0.55c 0.55c 0.56a 0.57a 0.56a 0.56a
h2 = 60% 0.71b 0.73a 0.71b 0.71b 0.69b 0.70a 0.69b 0.69b
h2 = 80% 0.84b 0.86a 0.83c 0.82c 0.80b 0.85a 0.78c 0.79c
h2 = 99% 0.96b 0.99a 0.95c 0.95c 0.96b 0.99a 0.95c 0.96b

QTL number = 180 QTL number = 240
h2 = 5% 0.19a 0.19a 0.18b 0.18b 0.14a 0.14a 0.13b 0.13b
h2 = 20% 0.39a 0.39a 0.38b 0.38b 0.32a 0.32a 0.31b 0.31b
h2 = 40% 0.52a 0.52a 0.51b 0.51b 0.54b 0.55a 0.53c 0.53c
h2 = 60% 0.69b 0.70a 0.69b 0.69b 0.69a 0.69a 0.68b 0.68b
h2 = 80% 0.84b 0.86a 0.84b 0.84b 0.79c 0.86a 0.85b 0.85b
h2 = 99% 0.97b 0.99a 0.96c 0.96c 0.97b 0.99a 0.96c 0.97b

(1)Means followed by equal letters, in the lines, do not differ by Tukey’s test, at 5% probability.

Table 2. Estimate of the genotypic predictive ability with different values of heritability (h2) and numbers of quantitative 
trait loci (QTL) of the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB), 
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods(1).

Method RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB
QTL number = 60 QTL number = 120

h2 = 5% 0.56a 0.55b 0.51d 0.53c 0.64a 0.64a 0.60c 0.63b
h2 = 20% 0.77b 0.78a 0.76c 0.76c 0.75a 0.75a 0.74b 0.74b
h2 = 40% 0.89b 0.92a 0.88c 0.88c 0.86a 0.86a 0.85b 0.85b
h2 = 60% 0.91b 0.93a 0.91c 0.91c 0.91b 0.92a 0.91b 0.91b
h2 = 80% 0.94b 0.97a 0.93c 0.93c 0.90b 0.96a 0.89c 0.89c
h2 = 99% 0.97b 0.99a 0.95c 0.96c 0.97b 0.99a 0.96c 0.96c

QTL number = 180 QTL number = 240
h2 = 5% 0.64b 0.64b 0.63c 0.65a 0.56a 0.56a 0.52b 0.52b
h2 = 20% 0.80a 0.80a 0.79b 0.79b 0.77a 0.77a 0.75b 0.74c
h2 = 40% 0.85b 0.86a 0.84c 0.84c 0.86b 0.87a 0.85c 0.85c
h2 = 60% 0.89b 0.91a 0.88c 0.88c 0.90b 0.91a 0.89c 0.89c
h2 = 80% 0.94b 0.96a 0.94b 0.94b 0.95b 0.96a 0.94c 0.94c
h2 = 99% 0.97b 0,99a 0.96c 0.96c 0.98b 0,99a 0.97c 0.97c

(1)Means followed by equal letters, in the lines, do not differ by Tukey’s test, at 5% probability.
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11 genomic selection methods, separating them into 
two groups: parametric and non-parametric. In the 
present work, the RKHS method was classified in a 
group different from that of the other methods.

Another factor that made the GBLUP and RR-BLUP 
traditional methods present similar results to that of the 
Bayesian method was the use of non-informative priori 
due to the default of the used BGLR package. When 
the non-informative priori is used, the posteriori is 
based only on the likelihood function, i.e., although the 
method was Bayesian, the results only transcribed the 
likelihood function in the same way that the traditional 
methods do (Bhering et al., 2015). Moreover, all 
Bayesian methods of genomic selection use the same 
original model, and the only difference between them 
is the hyperparameters in the priori (Xu et al., 2021). 
Since the priori was non-informative, the methods 
ended up being very similar, and, consequently, did 
not present significant differences.

If the priori information on the trait under study is 
not available, the RR-BLUP and GBLUP traditional 
methods can be used in the prediction of genetic value. 
Otherwise, when the priori information is available, 
the use of Bayesian methods will present better results 
(Meuwissen et al., 2001). However, if, in addition to 
the priori information, dominance and/or epistatic 
effects are also being estimated, the RKHS method is 
more appropriate.

The values of the phenotypic and genotypic 
predictive abilities increased with the increase in the 
heritability value, regardless of the method used or 
of the number of QTL controlling the trait (Figures 
1 and 2).

For the phenotypic predictive ability, there was 
a positive linear relationship with heritability in all 
scenarios with a different number of QTL. In addition, 
the value of the coefficient of determination (R2) of 
the linear regression was higher than 0.94 for all the 
genomic selection methods tested.

For the genotypic predictive ability, the relationship 
with heritability was quadratic in all scenarios with 
a different number of QTL controlling the trait. A 
plateau was reached when the heritability of the trait 
reached 60% (Figure 2). The R2 value of the quadratic 
regression was higher than 0.93 for all the genomic 
selection methods used.

The correlation between heritability and accuracy is 
positive, as verified in wheat for yellow rust and stem 

rust (Ornella et al., 2012), as well as in maize for grain 
yield and grain moisture (Zhao et al., 2013). However, 
heritability and the number of QTL controlling the 
trait are correlated factors, and, sometimes, traits with 
a lower heritability value and a higher QTL number 
present a higher accuracy than those with a higher 
heritability and a lower QTL number, as noted by 
Heffner et al. (2011). Similarly, in the present work, 
all traits controlled by 240 QTL presented a higher 
accuracy than those controlled by 60 QTL, regardless 
of heritability, although this relationship was not linear 
(Figures 3 and 4). However, for traits controlled by 
the same QTL number, the higher the heritability 
value, the higher were the phenotypic (Figure 1) and 
genotypic (Figure 2) accuracies, representing a linear 
and a quadratic relationship, respectively.

In breeding programs, selection accuracy can be 
significantly improved through genomic selection 
(Voss-Fels et al., 2019), mainly for traits with high 
phenotypic evaluation costs (protein and oil contents, 
for example) or that are very complex (resistant to 
diseases) due to their usually low heritability (lower 
than 30%), which makes selection based only on 
phenotype very difficult. Therefore, as observed in 
the present work, the lower the heritability value, the 
greater the difference between the reliability (square 
of the predictive accuracy) and heritability of a trait, 
i.e., for low heritability traits, selection based on the 
GEBV predicted by the genomic selection methods 
will be much more accurate than selection based on 
phenotypic values.

In the different scenarios simulated by varying the 
number of QTL for the prediction of genetic value, the 
R2 values of the cubic regressions, ranging from 0.58 
to 0.97, were higher than those of the other regression 
models (Figure 3). Therefore, no relationship was 
observed between the number of QTL controlling the 
trait and phenotypic predictive ability, regardless of 
the heritability of the trait.

When a trait is controlled by a low number of 
QTL of major effect, the Bayesian method showed a 
better performance than the GBLUP and RR-BLUP 
traditional methods, whereas the opposite was observed 
when the number of QTL was high (Meuwissen et al., 
2001; Zhong et al., 2009). However, this difference may 
be more influenced by other traits, such as heritability, 
training population size, and population structure, 
rather than by QTL number (Desta & Ortiz, 2014).
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The obtained results show that studying a factor 
separately can super- or underestimate the values 
estimated by genomic selection methods. Therefore, 
further works should be carried out considering 
several factors simultaneously, in order to establish 

the best genomic selection model for each population 
structure, which, in the present study, was F2.

For the genotypic predictive ability, no relationship 
was observed between the values predicted by the 
genomic selection methods and the number of QTL 

Figure 1. Phenotypic predictive ability (PPC) in function of heritability, with different numbers of QTL controlling the 
trait, of the following four genomic selection methods: Bayesian estimation method B (A), genomic best linear unbiased 
prediction (B), reproducing kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D). 
R2, coefficient of determination.
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controlling the quantitative trait. Once again, cubic 
regression presented the best results, with a R2 ranging 
from 85.29 to 98.58% (Figure 4).

Between the genetic and phenotypic correlations 
(Tables 3, 4, 5, and 6), a low R2 value was verified 

for the linear, quadratic, and cubic regression models 
evaluated, regardless of the genomic selection method 
used to estimate both correlations. The exception was 
the 99% heritability, which resulted in a R2 value 
higher than 89% for RR-BLUP, RKHS, and GBLUP. 

Figure 2. Genotypic predictive ability (GPC) in function of heritability, with different numbers of QTL controlling the 
trait, of the following four genomic selection methods: Bayesian estimation method B (A), genomic best linear unbiased 
prediction (B), reproducing kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D). 
R2, coefficient of determination.
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Moreover, the genomic selection methods differed 
regarding the prediction of genetic correlation by 
phenotypic correlation. However, no pattern was 
detected between the methods, with the results 

of R2 being completely random. The R2 values of 
the regressions increased with the increase in the 
heritability value for almost all evaluated scenarios 
with varying numbers of QTL controlling the trait, 

Figure 3. Phenotypic predictive ability (PPC) of the following four genomic selection methods in function of the number of 
QTL controlling the trait (60, 120, 180, and 240) and their respective coefficient of determination (R2) values, evaluated in 
different heritability values: Bayesian estimation method B (A), genomic best linear unbiased prediction (B), reproducing 
kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D).
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regardless of the genomic selection method used to 
estimate the genetic and phenotypic correlations.

According to Dekkers (2007), accuracy, also known 
as the genetic correlation between the true genetic 
value and the GEBV, is estimated by the correlation 

between the phenotypic value and the GEBV divided 
by heritability root squared. The linear, quadratic, and 
cubic regression models were used to predict the genetic 
correlation in function of the phenotypic correlation. 
However, the R2 evaluation of the regression models 

Figure 4. Genotypic predictive ability (GPC) of the following four genomic selection methods in function of the number of 
QTL controlling the trait (60, 120, 180, and 240) and their respective coefficient of determination (R2) values, evaluated in 
different heritability values: Bayesian estimation method B (A), genomic best linear unbiased prediction (B), reproducing 
kernel Hilbert spaces regression (C), and ridge-regression best linear unbiased prediction (D). 
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Table 3. Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 60 quantitative 
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB), 
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.

Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB
Heritability = 5% Heritability = 20%

Linear 32.20 30.53 30.68 35.27 48.31 10.57 32.67 38.97
Quadratic 33.16 30.69 31.17 35.56 48.67 11.20 32.78 38.97
Cubic 34.10 36.09 31.20 35.70 49.80 13.97 33.68 40.29

Heritability = 40% Heritability = 60%
Linear 29.00 35.41 61.54 54.33 51.08 61.65 40.73 34.34
Quadratic 29.03 37.49 61.69 55.73 51.15 61.67 41.17 34.37
Cubic 29.68 37.62 63.35 57.10 51.34 62.22 41.17 34.68

Heritability = 80% Heritability = 99%
Linear 50.63 69.96 54.71 60.70 94.30 96.00 44.52 97.30
Quadratic 51.11 69.98 54.72 61.74 94.44 96.14 44.52 97.31
Cubic 51.11 70.08 54.72 61.79 94.44 96.14 44.52 97.31

Table 4. Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 120 quantitative 
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB), 
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.
Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB

Heritability = 5% Heritability = 20%
Linear 10.46 41.52 18.32 24.00 25.92 44.02 27.74 46.04
Quadratic 13.15 41.56 19.30 30.45 27.28 44.55 30.25 46.04
Cubic 13.23 47.76 19.71 35.70 27.46 44.75 30.25 46.85

Heritability = 40% Heritability = 60%
Linear 21.10 17.80 52.50 11.62 36.73 43.84 34.77 52.93
Quadratic 23.67 25.27 57.68 12.09 37.29 49.81 35.52 52.97
Cubic 28.49 25.72 58.29 12.23 37.79 50.49 45.11 53.08

Heritability = 80% Heritability = 99%
Linear 68.36 72.07 58.31 54.47 94.63 96.88 10.23 95.43
Quadratic 68.47 72.56 58.77 54.56 94.64 96.91 10.23 95.89
Cubic 69.01 72.63 59.44 59.04 94.64 96.91 10.23 95.89

Table 5. Coefficient of determination for prediction accuracy by phenotypic accuracy for traits controlled by 180 quantitative 
trait loci obtained for the ridge-regression best linear unbiased prediction (RR-BLUP), Bayesian estimation method B (BB), 
reproducing kernel Hilbert spaces regression (RKHS), and genomic BLUP (GB) methods.

Regression model RR-BLUP BB RKHS GB RR-BLUP BB RKHS GB
Heritability = 5% Heritability = 20%

Linear 51.23 21.41 24.94 27.04 32.00 44.90 35.76 30.18
Quadratic 51.31 21.58 24.97 27.13 33.06 44.94 36.49 38.49
Cubic 51.61 21.94 26.09 30.31 35.96 45.09 36.59 41.45

Heritability = 40% Heritability = 60%
Linear 39.73 35.04 36.26 19.38 45.74 49.68 44.41 51.75
Quadratic 39.84 35.41 36.26 19.56 46.41 53.45 56.03 51.75
Cubic 40.03 36.84 36.27 20.15 47.30 53.59 56.09 52.25

Heritability = 80% Heritability = 99%
Linear 45.01 52.35 26.63 63.75 95.96 95.00 40.83 95.24
Quadratic 45.01 52.52 26.69 65.35 95.97 95.00 40.83 95.29
Cubic 45.03 52.70 26.69 65.48 95.97 95.00 40.83 95.29
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revealed that the relationship between the genetic and 
phenotypic correlations cannot be explained by simple 
regression models (Tables 3, 4, 5, and 6).

For heritability values closer to 1, i.e., for a small 
environmental effect, the regression models explained 
more accurately the genetic correlation from the 
phenotypic correlation (Tables 3, 4, 5, and 6). This fact 
is explained by the relationship between heritability 
and correlation, in which the correlation of the 
phenotypic value with the genetic value is the square 
root of heritability.

The results obtained in the present study are 
an indicative that there is no linear relationship 
between genetic and phenotypic correlations when 
the heritability of the trait is lower than 80%. This 
means that nonlinear models, such as artificial neural 
networks, must be used to estimate more accurately 
the genetic correlation in function of the phenotypic 
correlation.

Conclusions

1. Heritability presents a positive linear relationship 
with the phenotypic predictive ability and a positive 
quadratic relationship with the genotypic predictive 
ability of the evaluated genomic selection methods.

2. The number of QTL controlling the trait has 
no relationship with the phenotypic and genotypic 
predictive abilities of the tested methods.
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