PROVÁVEL MECANISMO DE LIBERAÇÃO DO MANGANÊS NO SOLO¹

MÁRIO MIYAZAWA², MARCOS A. PAVAN³ e LADISLAU MARTIN NETO⁴

RESUMO - O objetivo do presente trabalho foi estudar o principal mecanismo envolvido na solubilidade do Mn no solo. Os tratamentos de secagem, aquecimento, autoclavagem e oxidação do solo com H₂O₂ causaram aumentos na solubilidade do Mn. O Mn solubilizado pela secagem ao ar ou esterilização do solo foi reimobilizado, respectivamente, pelo umedecimento com água e com uma solução de solo natural. Em solo esterilizado e mantido seco ou úmido com água esterilizada não ocorreu a reimobilização do Mn. A força de extração do Mn seguiu a ordem: EDTA > CuCl₂ > Oxalato > MgCl₂. A solubilidade do Mn foi controlada pela estabilidade do complexo Mn-ligante orgânico-argila do solo. Em condições naturais, a concentração do ligante orgânico é mantida pela atividade biológica. Os tratamentos físicos ou químicos do solo afetam a atividade microbiana, diminuem a produção de ligante orgânico e alteram a solubilidade do Mn no solo. A complexação orgânica é provavelmente o principal mecanismo que controla a solubilidade do Mn no solo.

Termos para indexação: micronutriente, metal de transição, preparo de solo, amostras de solo, secagem, autoclavagem, oxidação.

A POSSIBLE MECHANISM FOR MANGANESE RELEASE FROM ACID SOIL.

ABSTRACT - The objective was to study the principal mechanism responsible for Mn solubility in acid soils in the State of Paraná, Brazil. Air-drying, heating, autoclaving and oxidation with H_2O_2 in soil samples increased Mn solubility. Soluble Mn after drying or sterilizing soil sample was re-immobilized, respectively, by wetting with water or adding soil solution obtained from natural soil. Sterilized soil kept dried or wet with sterilized water did not show Mn re-immobilization. The strength of extraction solution was the following: EDTA > CuCl₂ > Oxalic acid > MgCl₂. The Mn solubility was controlled by Mn-organic ligant stability complex. Under natural conditions the content of soil organic ligant is maintained by biological activity. Mn-organic complexing reaction was probably the main mechanism responsible for the control of Mn solubility in acid soils in the State of Paraná.

Index terms: micronutrient, transition metal, soil handling, soil drying, soil heating, autoclaving, soil oxidation.

INTRODUCÃO

As análises de solo para fins de fertilidade são realizadas com amostras secas ao ar, devido às facilidades de operação e manuseio e, principal-

mente, porque após o processo não ocorrem alterações significativas nas principais características químicas do solo, em relação às mantidas na umidade de campo. Entretanto, pelo menos em relação ao Mn, a secagem do solo pode causar alterações pronunciadas na sua solubilidade (Fujimoto & Sherman 1945; Pavan & Miyazawa 1984). Em alguns solos do Paraná foram observados aumentos de 10 a 60 µg/g no teor de Mn após a secagem ao ar de amostras de solo (Pavan & Miyazawa 1984). Recentemente foi também observado que a solubilidade do Mn nesses solos é influenciada não apenas pela temperatura de

Pesq. agropec. bras., Brasília, v.28, n.6, p.725-731, jun. 1993

Aceito para publicação em 16 de dezembro de 1992.
Extraído do trabalho apresentado no XXIII Congresso Brasileiro de Ciência do Solo, Porto Alegre, 21 a 27.07.91.

² Químico, Fundação Instituto Agronômico do Paraná (IAPAR), Caixa Postal 1331, CEP 86001-970 Londrina, PR.

³ Eng. - Agr., Ph.D., IAPAR, Londrina, PR.

⁴ Físico, UAPDIA/EMBRAPA, Caixa Postal 741, CEP 13560 São Carlos, SP.

secagem da amostra, mas também pelo tipo e concentração da solução extratora (Miyazawa et al. 1991).

O controle da solubilidade do Mn no solo tem sido atribuído aos óxidos de Mn (Khanna & Mishra 1978), aos complexos orgânicos (Bremner et al. 1946, Hammes & Berger 1960) e à reações biológicas (Mann & Quastel 1946). A importância desses mecanismos para as nossas condições não tem sido estudada.

O objetivo deste trabalho foi avaliar qual o principal mecanismo envolvido na liberação do Mn²⁺ em amostras de solos ácidos do Paraná.

MATERIAL E MÉTODOS

Solo - Coletou-se amostra da camada superficial (0-20 cm) de um Latossolo Roxo distrófico na estação experimental do Instituto Agronômico do Paraná (IAPAR), em Londrina. Subamostra foi seca ao ar, moída, passada em peneira de 2 mm e utilizada em análise química segundo a metodologia descrita por Pavan et al. (1992). As principais características do solo são: pH (CaCl₂) 4,2; Al 1,62 meq/100 ml; Ca 1,78 meq/100 ml; Mg 0,60 meq/100 ml; K 0,49 meq/100 ml; carbono orgânico total 2,60%; e H⁺ + Al (acidez total) 8,52 meq/100 ml.

Experimento 1. Efeito da secagem à luz solar. Colocou-se o solo em caixas de plástico de 25 cm da profundidade com a umidade inicial na capacidade de campo (200 hPa). As caixas foram expostas à luz solar, recebendo uma cobert: ra de lona plástica apenas em dias chuvosos. Coletaram-se amostras de solo aos 0, 3, 7, 14 e 21 dias e determinaram-se a umidade e o teor de Mn, extraído com a solução NH4Ac 1M pH7,0 na proporção 1:10 (solo:solução). O Mn foi determinado por espectrofotometria de absorção atômica.

Experimento 2. Efeito da temperatura de secagem. Aqueceu-se o solo em banho-maria nas temperaturas 20°C, 40°C, 60°C, 80°C, 100°C e 120°C durante duas horas, com exceção do tratamento 120°C aquecido por 30 minutos. O Mn foi extraído do solo com NH₄Ac 1M pH 7,0 e determinado como indicado no experimen-to 1

Experimento 3. Efeito da esterilização e incubação do solo. Esterilizou-se o solo em autoclave durante 30 minutos a 120°C. A seguir, adicionarum-se 0, 125, 250 e 500 mg/kg solo seco de Mn²⁺ como MnSO₄. Esse material foi incubado durante seis meses nas seguintes condições: (a) solo esterilizado mantido seco; (b) solo esterilizado mantido úmido na capacidade de campo com água destilada (200 hPa) e esteriliza-

da em autoclave; (c) solo esterilizado e mantido úmido na capacidade de campo com água extraído do solo original (solução de solo); e (d) solo original sem esterilização mantido úmido na capacidade de campo com água destilada. Para o tratamento "c" a solução do solo foi obtida através do seguinte procedimento: coletou-se amostra do mesmo solo em uma mata próxima, à qual foi adicionada água destilada destilada até atingir o ponto de saturação (pasta de saturação); esta foi deixada em repouso por 8 horas, extraindo-se depois a solução do solo à vácuo. Durante o período de incubação coletaram-se amostras de solo aos 0, 10, 20, 30, 60, 120 e 180 dias, das quais extraiu-se Mn com NH₄Ac 1M pH 7,0 e determinou-se como indicado no experimento 1.

Experimento 4. Efeito da oxidação, tratamento térmico e extratores. Foram preparadas duas subamostras de solo. Em uma delas oxidou-se a matéria orgânica com H₂O₂ aproximadamente 30% até à cessação do desprendimento de CO2. A outra foi conservada em laboratório sem tratamento. Ambas as amostras foram secas à sombra até atingirem a umidade próxima a 15%. Após isso, cada uma das subamostras de solo recebeu os seguintes tratamentos: (a) secagem em estufa a 60°C por 24 horas; (b) autoclavagem a 120°C durante 30 minutos e secagem à sombra; (c) incineração na mufla a 250°C durante 2 horas; (d) incineração na mufla a 500°C durante 2 horas; (e) manutenção sem tratamento físico ou químico nas condições de laboratório. A seguir, extraiu-se Mn do solo com as seguintes soluções: (a) EDTA e oxalato pH 7,0 10-6, 10-5, 10-4, 10-3, 10-2.5, 10-2, 10-1,5 e 10-1M; (b) CuCl₂ pH 2,5 e MgCl₂ pH 6,0 10-5, 10-4, 10-3, 10-2, 10-1,5, 10-1, 10-0,5 e 100,0M.

Procedimento de extração de Mn. Transferiu-se 0,5 g de solo para frasco de vidro de 40 ml. A seguir foram adicionados 20 ml da solução extratora, agitando-se durante 48 horas e centrifugando-se a 3000 rpm por 10 minutos. O Mn foi determinado no subrenadante por espectrofotometria de absorção atômica.

RESULTADOS

Efeito da secagem à luz solar. A solubilidade do Mn no solo aumentou com o tempo de insolação (Fig. 1). As maiores variações no teor de Mn ocorreram na camada superficial (0-2,5 cm), diminuindo progressivamente com a profundidade, sendo insignificante na camada 10-25 cm. Após 21 dias de insolação, o teor de Mn foi de 121 ppm a 0-2,5 cm e 3 ppm a 10-15 cm de profundidade. Estes resultados

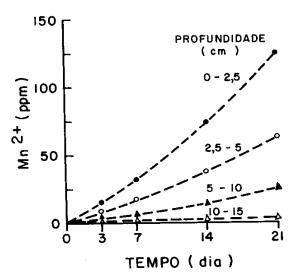


FIG. 1. Efeito do tempo de secagem à luz solar na solubilidade do Mn.

obtidos no laboratório são semelhantes aos observados em condições de campo (Pavan & Miyazawa 1984).

Efeito da temperatura de secagem do solo. O aumento da temperatura de aquecimento do solo de 25°C a 40°C causou pequena alteração na solubilidade do Mn (Fig. 2). Entretanto, o teor de Mn cresceu exponencialmente com o aumento da temperatura de secagem de 60°C a 120°C. Os resultados dos experimentos 1 e 2 e os publicados anteriormente (Pavan & Miyazawa 1984; Miyazawa et al. 1991) mostram que as curvas de solubilidade do Mn apresentam características semelhantes, diferindo apenas quanto à unidade de tempo. Em todos os experimentos, a elevação da temperatura causou aumento na cinética de liberação do Mn do solo.

Efeito da esterilização e incubação do solo. Após dois meses de incubação do solo original não esterilizado, praticamente todo o Mn adicionado (500 ppm) tornou-se insolúvel em NH₄Ac lM pH7,0 (Fig. 3). Na amostra de solo esterilizada e incubada com a solução de um solo coletado na mata, o tempo para insolubilização do Mn adicionado aumentou para quatro meses. No solo esterilizado e mantido seco ou úmido com água esterilizada, ocorreram aumentos de 24% e 30%,

respectivamente, no teor de Mn no primeiro mês de incubação. Esse aumento pode ser devido a uma reorganização na estrutura da argila. No período entre o primeiro e o sexto mês de incubação a concentração de Mn permaneceu praticamente inalterada em ambos os tratamentos. Resultados semelhantes foram obtidos com adições de 0, 125 e 250 mg/kg de Mn.

Efeito da oxidação, tratamento térmico e extratores do solo. A oxidação com H2O2 causou uma diminuição no teor de carbono total do solo de 2,6% a 0,9%. Na amostra de solo natural sem oxidação da matéria orgânica, os tratamentos de secagem a 60°C, incineração a 250°C e 500°C e autoclavagem a 120°C causaram aumentos no teor de Mn-NH₄Ac 1M pH7,0 de 14, 6, 33 e 78 vezes, respectivamente, em relação ao solo mantido úmido a 25°C (Tabela 1). A oxidação da matéria orgânica do solo causou aumentos superiores a 100 vezes no teor de Mn, nos tratamentos de secagem a 60°C e autoclavagem a 120°C, em relação ao solo natural úmido a 25°C. O aumento da temperatura de incineração de 250°C para 500°C diminuiu a solubilidade do Mn, sendo maior no solo natural em relação ao oxidado.

Na amostra de solo natural (sem oxidação de matéria orgânica), mantida úmida a 25°C, os quelados orgânicos (EDTA e oxalato) e as soluções salinas (CuCl2 e MgCl2) em concentrações diluídas extraíram quantidades semelhantes de Mn (Fig. 4). Entretanto, nas soluções concentradas, a força de extração foi a seguinte: EDTA > CuCl₂ > Oxalato > MgCl₂. Os tratamentos de secagem a 60°C e autoclavagem a 120°C causaram aumentos sistemáticos nos teores de Mn, principalmente nas soluções diluídas dos extratores (EDTA $< 10^{-4}$ M, oxalato $< 10^{-3}$ M, $CuCl_2 < 10^{-4}M$ e $MgCl_2 < 10^{-4}M$). Essa diferença entre tratamentos do solo no teor de Mn tornou-se praticamente nula nas soluções concentradas de > 10⁻²M e CuCl₂ > 1M. O aumento da temperatura de incineração de 250°C para 500°C diminuiu a solubilidade do Mn em todos os extratores.

Na amostra de solo oxidada com $\rm H_2O_2$ a solubilidade do Mn aumentou em cerca de 20 vezes, em relação ao solo natural, com as soluções de EDTA < 10^{-4} M, oxalato < 10^{-3} M, CuCl $_2$ < 10^{-4} M e MgCl $_2$ < 10^{-4} M (Fig. 5). Com as soluções concentradas dos extratores (EDTA > 10^{-2} M, CuCl $_2$

> 10^{-1,5}M e MgCl₂ > 10^{-1,5}M), a solubilidade do Mn no solo oxidado foi semelhante à do solo natural, principalmente com as soluções de EDTA > 10^{-1,5}M. No solo oxidado não foi observado aumento na solubilidade do Mn com o aumento da temperatura, como ocorreu no solo natural. A incineração do solo oxidado diminuiu a solubilidade do Mn em cerca de 50%, em relação ao solo natural, em todos os extratores. O aumento da temperatura de incineração do solo oxidado causou diminuição na solubilidade do Mn em nível superior ao observado no solo natural. Essa diminuição foi provavelmente devido à oxidação do Mn²⁺ para MnO₂, cuja reação foi facilitada no solo oxidado com menor teor de matéria orgânica.

DISCUSSÃO

O teor de Mn nos solos do Paraná, extraído com NH₄AC 1M pH 7,0 na umidade de campo, geralmente varia entre 0,5 e 3,0 ppm. Entretanto, os processos de secagem, autoclavagem, incineração, oxidação com H₂O₂ etc., aumentam a solubilidade do Mn. Provavelmente, a liberação do Mn do solo é devido à decomposição térmica dos quelatos orgânicos. A presença do orbital "d", parcialmente ligado à estrutura eletrônica do íon Mn²⁺, induz a formação de complexos, especialmente com ligantes orgânicos de baixo peso molecular (Stevenson 1967). No solo, a solubilidade do Mn é controlada pela produção de ligantes orgânicos (L), exudados pelos microrganismos como subproduto dos processos biológicos, de acordo com a seguinte reação:

$$MnL_{solo} Mn^{2+} + L_{solo}$$

Os processos que afetam a produção do "L" pelos microrganismos do solo favorecem o sentido da reação para a direita. Em condições naturais, a baixa solubilidade do Mn do solo é mantida pela constante produção do "L" pelos microrganismos. O Mn solubilizado pela secagem ou esterilização do solo foi insolubilizado, respectivamente, pela reativação dos microrganismos através do umidecimento com água ou com solução de solo de mata. Quando o solo foi esterilizado e mantido seco ou umido com água esterilizada não ocorreu a insolubilização do Mn, provavelmente devido à falta de microrganismos para produção do "L".

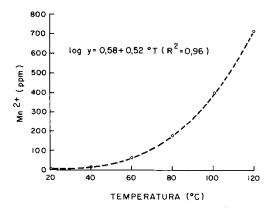


FIG. 2. Efeito da temperatura de secagem do solo na solubilidade do Mn.

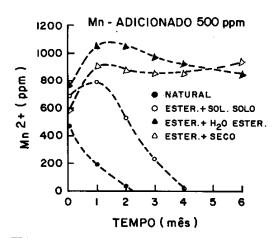


FIG. 3. Efeitos da esterilização e incubação do solo na solubilidade do Mn.

TABELA 1. Manganês extraído do solo con NH₄Ac 1M pH 7,0.

Tratamentos	Úmido Seco		Autoclav.	Incinerado	
	25°C	60°C	120°C	250°C	500°C
Solo natural	5	71	393	165	33
Solo oxidado	506	514	595	175	10

Com o objetivo de confirmar a hipótese da complexação MnL, extraiu-se o Mn do solo com quelatos orgânicos (EDTA e Oxalato) e soluções

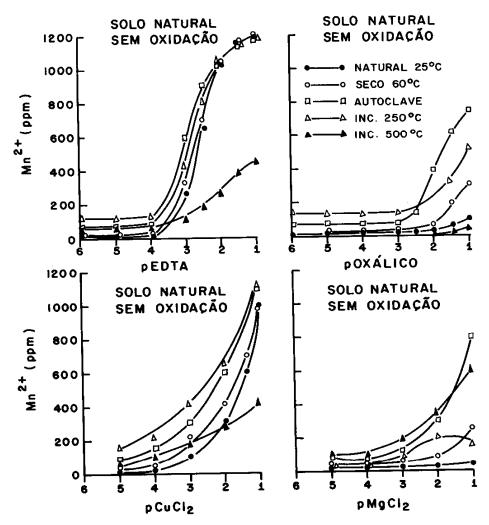


FIG. 4. Extração de Mn do solo natural (sem oxidação) com diferentes tratamentos térmicos.

salinas ($CuCl_2$). O uso dessas substâncias baseouse em dois princípios básicos: (1) a adição de um ligante orgânico "A" (L_A) com uma constante de estabilidade termodinâmica (log K), maior que a do complexo Mn-ligante orgânico do solo (MnL_B), pode causar o sequestro do metal do complexo, conforme a reação:

 $MnL_{Bsolo} + L_{Asolução} MnL_{Asolução} + L_{Bsolo}$

As constantes de estabilidade termodinâmica

(log K) dos principais complexos de Mn²⁺ são: EDTA = 14,04; Mn-fulvato e 1,47; Mn-Oxalato = 3,89; Mn-acetado = 1,2; Mn-maloato = 3,29, Mn-alanina = 3,02; Mn-asparagina₂ = 4,5; e Mn-asparato = 3,90. De acordo com estes valores termodinâmicos é esperado que a solução de EDTA sequestre o Mn²⁺ dos principais ligantes orgânicos do solo, devido ao maior valor do log K. Por outro lado, a solução de oxalato deve extrair menor quantidade de Mn²⁺-complexo orgâ-

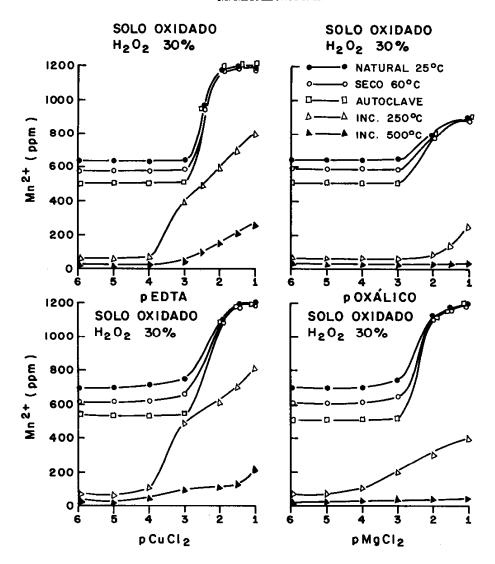


FIG. 5. Extração de Mn do solo oxidado com H_2O_2 30% com diferentes tratamentos térmicos.

nico devido ao menor valor do log K. Provavelmente, outros ligantes orgânicos podem também contribuir para a complexação do Mn, tais como aminoácidos, moléculas de alto peso molecular (ácidos húmico e fúvico) e ácidos voláteis (fôrmico, acético e butírico).

A série de estabilidade termodinâmica dos

complexos organometálicos dos metais de transição divalentes, descrita por Irving & Willians (1948), segue a ordem: $Mn^{2+} < Fe^{2+} < Zn^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+}$. Com base na série de estabilidade de Irving & Willians, é esperado que o Cu^{2+} desloque o Mn^{2+} -complexo orgânico do solo. Assim, os princípios descritos acima consti-

tuem-se no suporte teórico para os resultados obtidos, principalmente no experimento 4.

Os efeitos do tipo e concentrações da solução extratora e do modo de preparo da amostra de solo foram semelhantes aos descritos anteriormente (Miyazawa et al. 1991).

A oxidação do solo com $\rm H_2O_2$ aumentou a solubilidade do $\rm Mn^{2+}$, principalmente devido à destruição da maior parte dos ligantes orgânicos, favorecendo o deslocamento do metal para a solução do solo. As soluções concentradas de EDTA > $\rm 10^{-2}M$ e $\rm CuCl_2 > 10^{-1.5}M$ extraíram quantidades de Mn superiores a 65% do Mn total do solo (Mn total 1930 ppm).

Os teores de Mn extraídos do solo natural com as soluções concentradas de EDTA e CuCl₂ correspondem, respectivamente, 95% e 78% do Mn extraído do solo oxidado pelas mesmas soluções. Essa menor extração do Mn no solo natural pode ser devido à alta estabilidade dos complexos Mn-EDTA e CuL_{solo}. Considerando que as soluções dde EDTA e CuCl₂ não causam a redução do MnO₂ para Mn²⁺, é possível que o Mn extraído por essas soluções do solo natural seja a dos complexos orgânicos insolúveis de MnL do solo.

CONCLUSÕES

1. O provável mecanismo de liberação do Mn no solo apresenta a seguinte reação de equilíbrio:

$$ML_{solo}$$
 $\frac{1}{2}$ $Mn^{2+} + L_{solos}$

onde L = ligante orgânico.

- 2. Os tratamentos físicos e químicos do solo (secagem, aquecimento, autoclavagem, oxidação da matéria orgânica, etc.) deslocam o equilíbrio da reação para a direita com a liberação do Mn²⁺, porque esses processos afetam a atividade microbiana e, conseqüentemente, a produção de ligantes orgânicos.
- 3. O reumidecimento do solo seco ao ar e a inoculação do solo esterilizado com uma solução de solo natural deslocam o equilíbrio da reação para a esquerda devido à recomposição da atividade biológica.

REFERÊNCIAS

- BREMNER, I.M.; HEINTZE, S. G.; MANN, P. J. G.; LEE, H. Metallo-organic complexes in soil. Nature, London, v.158, p.390-791, 1946.
- FUJIMOTO, C. K.; SHERMAN, G. D. The effect of drying, heating and weting on the level of exchangeable manganese in Hawaiian soil. Soil Science Society of America Proceedings, Madison, v.10, p.107-112, 1945.
- HAMMES, J. K.; BERGER, K. C. Chemical extraction and crop removal of manganese from air-dried and moist soils. Soil Science Society of America Proceedings, Madison, v.24, p.361-364, 1960.
- IRVING, H. M.; WILLIANS, R. J. P. Order of stability of metal complexe. Nature, London, v.162, p.746-747, 1948.
- KHANNA, P. K.; MISHRA, B. Behaviour of manganese in some acid soils in Western Germany in relation to pH and air-drying. Geoderma, Amsterdam, v.20, p.289-297, 1978.
- MANN, P. J. G.; QUASTEL, J. H. Manganese metabolism in soils. Nature, London, v.150, p.154-156, 1946.
- MIYAZAWA, M.; PAVAN, M. A.; BLOCK, M. F.; MARTIN NETO, L.; ARAÚJO, A. R. de. Efeitos da temperatura de secagem do solo e extratores na solubilidade do manganês. Revista Brasileira de Ciência do Solo, Campinas, v.15, p.225-227, 1991.
- PAVAN, M. A.; BLOCH, M. F. de M.; ZEMPULSKI, H. C.; MIYAZAWA, M.; ZOCOLER, D. C. Manual de análise química de solo e controle da qualidade. Londrina: IAPAR, 1992. 40p. (IAPAR. Circular, 76).
- PAVAN, M. A.; MIYAZAWA, M. Disponibilidade do Mn no solo: dificuldades e problemas na interpretação de análise para fins de fertilidade. Revista Brasileira de Ciência do Solo, Campinas, v.8, p.285-289, 1984.
- STEVENSON, F. J. Organic acid in soil. In: McLAREN, A. D.; PETERSEM, G. H.; (Eds.). Soil Biochemistry. New York: Marcel Dekker, Inc., 1967. p.119-146.