EFEITOS DE TRATAMENTOS PRÉ-GERMINATIVOS NA SUPERAÇÃO DA DORMÊNCIA DE SEMENTES DE ARROZ E NA ATIVIDADE ENZIMÁTICA DA PEROXIDASE¹

ANTÔNIO RODRIGUES VIEIRA², MARIA DAS GRAÇAS GUIMARÃES CARVALHO VIEIRA³ VÂNIA DÉA DE CARVALHO⁴ e ANTÔNIO CARLOS FRAGA³

RESUMO – Este trabalho foi desenvolvido em condições de laboratório, na Escola Superior de Agricultura de Lavras, em 1989/90, com o objetivo de avaliar a eficiência de tratamentos prégerminativos na superação da dormência de sementes de arroz (*Oryza sativa* L.), bem como seus efeitos na atividade enzimática da peroxidase. As cultivares irrigadas Inca e MG 1, ambas apresentando dormência pós-colheita, foram submetidas por vários tempos a diferentes tratamentos pré-germinativos: hipoclorito de sódio 1%; peróxido de hidrogênio (H₂O₂ 20 Vol.); envelhecimento acelerado 40°C e 100% UR; e pré-secagem em estufa de circulação forçada de ar com combinação de tempo x temperatura. A pré-secagem a 40°C por 168 horas apresentou os melhores resultados na superação da dormência das sementes em ambas as cultivares. Os tratamentos com pré-secagem foram também os mais eficientes na inibição da atividade da peroxidase, especialmente para a cultivar Inca.

Termos para indexação: Oryza sativa, cultivares de arroz, envelhecimento acelerado, pré-seca-gem.

EFFECTS OF PRE-GERMINATION TREATMENTS IN OVERCOMING RICE SEED DORMANCY AND ON THE ENZYMATIC ACTIVITY OF PEROXIDASE

ABSTRACT – This work was developed under laboratory conditions, at Escola Superior de Agricultura de Lavras, in 1989/90 to evaluate the efficiency of pre-germination treatments in overcoming rice ($Oryza\ sativa\ L$.) seed dormancy, as well as their effects on peroxidase enzyme activity. Irrigated cultivars Inca and MG 1, both presenting post-harvest dormancy, were submitted, to different treatments prior to germination: 1% sodium hipochlorite; hidrogen peroxide (H_2O_2 - 20 Vol.), accelerated aging 40°C and 100% UR; and pre-drying, in an oven with forced air circulation at different time x temperature combinations. Pre-drying at 40°C for 168 hours presented the best results in overcoming seed dormancy of both cultivars. Pre-drying treatments were also more effective in inhibiting peroxidase activity, especially for cultivar Inca.

Index terms: Oryza sativa, rice cultivars, accelerated aging, pre-drying.

INTRODUÇÃO

Uma caracterização importante apresentada por algumas cultivares de arroz é a presença de dormência pós-colheita, o que tem dificultado em muito a avaliação da qualidade das sementes, (Amaral & Silva, 1983). De acordo com Fraga (1982), esse fenômeno parece estar relacionado com os teores endógenos de CO2 ou com a presença de inibidores que afetam a penetração de oxigênio. Segundo Cicero (1986), o consumo de oxigênio pelo tegumento em algumas espécies é atribuído à oxidação de vários compostos fenólicos, tais como floridizin, ácido clorogênico e ácido paracumaril-químico, reconhecidamente presentes na casca. Bewley & Black (1982) citam o caso do arroz como sendo um suporte plausível para a relação entre a dormência e o consumo de oxigênio pelos tecidos extra-embrionários.

¹ Aceito para publicação em 9 de novembro de 1993

² Eng.-Agr., M.Sc., Centro Regional de Pesquisa do Sul de Minas (CRSM) EPAMIG, Caixa Postal 176, CEP 37200-000, Lavras, MG.

³ Eng.-Agr., Prof.-Adjunto, Setor de Sementes, Dep. de Agric., ESAL, Caixa Postal 37, CEP 37200-000, Lavras, MG.

⁴ Eng^a.-Agr^a, Dr^a, Centro Regional de Pesquisa do Sul de Minas (CRSM), EPAMIG, Caixa Postal 176, CEP 37200-000, Lavras, MG.

Os métodos de quebra de dormência como meios que visam acelerar, aumentar e uniformizar a germinação são citados por Carneiro (1986). De acordo com as Regras para Análise de Sementes, Brasil (1976), os métodos recomendados para superar a dormência de arroz são: imersão em H₂O a 40°C por 24 horas, ou em solução de hipoclorito de sódio a 10% por tempo igual. Embora Delouche & Nguyen e Mikkelsen & Surah, citados por Liberal et al. (1972), considerem o tratamento com hipoclorito de sódio eficiente para estimular rapidamente a germinação e aumentar o crescimento de plântulas de arroz irrigado, tem-se observado que esse método não tem apresentado resultados consistentes.

Em estudo realizado com variedades de arroz que apresentavam dormência, Vieira et al. (1985) relatam que a pré-secagem em estufa de circulação forçada de ar a 40°C, por sete dias, demonstrou maior eficiência dentre os tratamentos testados para a superação da dormência. Este resultado concorda com os obtidos por Liberal et al. (1972), que utilizaram pré-secagem a 40°C e 50°C por um período de dez dias, Lopes et al. (1973), que, em cultivares de arroz do Suriname e das Filipinas, utilizaram temperatura de 54°C durante quatro e dois dias, respectivamente, e Gonçalo & Amaral (1976), trabalhando em programas de hibridação, demonstraram ser a pré-secagem em estufa a 49°C durante 24 horas, eficiente na quebra da dormência em sementes de arroz logo após a colheita.

Quanto às peroxidases, seu efeito na germinação de sementes é devido tanto à sua ação benéfica pela oxidação dos compostos fenólicos, possíveis inibidores naturais da germinação, quanto pela sua competitividade pelo oxigênio disponível – neste caso, retardando ou inibindo esse processo.

Levando-se em consideração a importância de identificar tratamentos pré-germinativos que acelerem o processo de germinação do arroz e que sejam de fácil padronização e utilização em laboratório, buscou-se, com a presente pesquisa, avaliar a eficiência de tratamentos pré-germinativos na superação da dormência de sementes de arroz, bem como determinar o efeito desses tratamentos na atividade enzimática da peroxidase.

MATERIAL E MÉTODOS

A pesquisa foi desenvolvida no Laboratório de Análise de Sementes do Departamento de Agricultura e no Laboratório de Análise de Produtos Vegetais do Departamento de Ciências dos Alimentos da Escola Superior de Agricultura de Lavras (ESAL), Minas Gerais, no período de 1989/90, através da condução de dois experimentos.

Preliminarmente à condução dos experimentos foram realizados testes de umidade e germinação (plântulas normais e sementes dormentes), segundo prescrições das Regras para Análise de Sementes (Brasil, 1976), e determinação de compostos fenólicos, os quais foram extraídos pela técnica de Swain & Hills (1959) e identificados pelo método de Folin Denis descrito na Association of Official Analytical Chemists (1970), com a finalidade de determinar a qualidade inicial e a intensidade de dormência em que se encontravam as sementes.

Utilizaram-se sementes genéticas das cultivares de arroz irrigado Inca e MG 1, safra 88/89, produzidas pela Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG.

Na Tabela I apresentam-se as médias obtidas nas determinações preliminares. O grau de umidade das amostras foi similar, enquanto que o poder germinativo indicou a presença de dormência em diferentes níveis de intensidade para as duas cultivares. Os teores de fenólicos foram superiores na cultivar MG I (maior dormência).

1º Experimento - Avaliação da eficiência de tratamentos pré-germinativos

As sementes de arroz das duas cultivares foram submetidas aos tratamentos pré-germinativos, relacionados na Tabela 2, e avaliadas através do teste-padrão de germinação.

TABELA 1. Médias de grau de umidade, plântulas normais, sementes dormentes e teores de fenólicos totais em duas cultivares de arroz. ESAL, Lavras-MG, 1989.

Cultivar	Grau	Plântulas	Sementes	*Fenólicos
	umidade	normais	dormentes	totais
	(%)	(%)	(%)	(mg/100g)
Inca	12,8	45,0	54,0	957,70
MG-1	12,9	21,0	78,0	1.004,80

^{*} Fenólicos nas glumelas (casca)

Após cada período de tratamento, 200 sementes de cada cultivar foram distribuídas em quatro repetições de 50 sementes. O substrato utilizado foi o papel Germitest, o qual sofreu lavagem prévia por um período aproximado de doze horas, em água corrente.

Após a semeadura, o material foi mantido em germinador do tipo Mangelsdorf, marca Biomatic, previamente regulado para manter temperatura constante de 30°C. Foram efetuadas avaliações aos sete e quatorze dias, seguindo prescrições das Regras para Análise de Sementes (Brasil. 1976).

2º Experimento - Avaliação do efeito de tratamentos pré-germinativos na atividade enzimática da peroxidase

Para esta avaliação utilizaram-se os tratamentos prégerminativos relacionados na Tabela 3, por serem os que sobressaíram em cada grupo de tratamentos com princípios semelhantes, no experimento 1.

A atividade da peroxidase foi determinada de acordo com a técnica de Matsuno & Uritani (1972), descrita a seguir:

TABELA 2. Tratamentos pré-germinativos utilizados em sementes de duas cultivares de arroz. ESAL, Lavras-MG, 1989.

Nº	Tratamentos
01	Embebição em hipoclorito de sódio 1% por 24 horas
02	Embebição em hipoclorito de sódio 1% por 36 horas
03	Embebição em hipoclorito de sódio 1% por 48 horas
04	Embebição em água oxigenada 20 volumes por 12 horas
05	Embebição em água oxigenada 20 volumes por 24 horas
06	Embebição em água oxigenada 20 volumes por 36 horas
07	Embebição em água oxigenada 20 volumes por 48 horas
08	Envelhecimento acelerado 40°C e 100% UR por 96 horas
09	Envelhecimento acelerado 40°C e 100% UR por 108 horas
10	Envelhecimento acelerado 40°C e 100% UR por 120 horas
11	Pré-secagem em estufa de circulação forçada de ar a 40°C por 168 horas
12	Pré-secagem em estufa de circulação forçada de ar a 50°C por 48 horas
13	Pré-secagem em estufa de circulação forçada de ar a 50°C por 96 horas
14	Pré-secagem em estufa de circulação forçada de ar a 60°C por 24 horas
15	Pré-secagem em estufa de circulação forçada de ar a 60°C por 48 horas
16	Pré-secagem em estufa de circulação forçada de ar a 60°C por 72 horas
17	Sem tratamento (Testemunha)

TABELA 3. Tratamentos pré-germinativos utilizados em sementes de duas cultivares de arroz, avaliados quanto a sua ação sobre a atividade da peroxidase. ESAL, Lavras, 1989.

Nº	Tratamentos
01	Embebição em hipoclorito de sódio 1% por 24 horas
02	Embebição em água oxigenada 20 volumes por 12 horas
03	Envelhecimento acelerado 40°C e 100% UR por 96 horas
04	Pré-secagem em estufa de circulação forçada de ar a 40°C por 168 horas
05	Pré-secagem em estufa de circulação forçada de ar a 50°C por 96 horas
06	Pré-secagem em estufa de circulação forçada de ar a 60°C por 72 horas
07	Sem tratamento (Testemunha)

Para extração da enzima, amostras de 20 g de sementes de arroz previamente trituradas em micromoinho elétrico tipo Willye modelo TE-048, foram liquidificadas por três minutos juntamente com 40 ml da solução-tampão de fosfato 0,05M pH 7,0 a 5°C. O material, assim preparado para cada tratamento, foi filtrado a vácuo, usando papel de filtro Whatman nº 1. Posteriormente, o material foi centrifugado em uma ultracentrifuga refrigerada, por um período de 10 minutos, a uma velocidade constante de 10.000 rpm. O líquido sobrenadante foi transferido para um frasco de 100 ml com tampa de pressão, e colocado em banho de gelo para ser utilizado como extrato enzímico.

Para determinação da atividade enzimática da peroxidase (U/min/g de tecido), em um tubo de ensaio de 30 ml foram adicionados 3 ml de extrato enzímico; 5 ml de solução-tampão fosfato citrato 0,05M pH 5,0; 0,5 ml de H₂O₂ 3%, 0,5 ml de guaiacol 0,5% (todos os reagentes à temperatura aproximada de 5°), o que a seguir foi rapidamente homogeneizado e deixado em banho maria por 5 minutos a 30°C. Após o período de incubação, foram tomados 4 ml deste substrato em um tubo de espectrofotômetro, efetuando-se quatro leituras por tratamento em 450 nm. O controle (teste em branco), foi feito utilizando-se os mesmos reagentes citados anteriormente, com exceção do extrato enzímico, o qual foi substituído por 3 ml de água destilada.

Uma unidade da enzima peroxidase é definida como a quantidade de extrato enzímico que acusa um aumento na absorbância de 0,001 unidade de densidade ótica/minuto.

O delineamento experimental utilizado foi o inteiramente casualizado, sendo o experimento 1 em esquema fatorial 2 x 17, com quatro repetições, onde os fatores estudados foram duas cultivares e 17 tratamentos pré-germinativos (Tabela 2). O experimento 2 foi em esquema fatorial 2 x 7, com quatro repetições: duas cultivares e sete tratamentos pré-germinativos (Tabela 3).

Os dados obtidos foram inicialmente transformados em ARC SEN $\sqrt{x^1}$ para normalização da distribuição. Foi feita análise de variância, utilizando-se o teste de Tukey ao nível de 5% de probabilidade para a comparação das médias.

RESULTADOS E DISCUSSÃO

Avaliação da eficiência de tratamentos prégerminativos

As médias para os efeitos da interação cultivar

x tratamento, para percentagens de germinação (plântulas normais) e sementes dormentes, encontram-se nas Tabelas 4 e 5, respectivamente.

Os resultados obtidos evidenciaram que as cultivares reagem diferentemente a determinados tratamentos, o que reforça relatos de Amaral & Gonçalo (1977), os quais afirmam que a escolha do tratamento a ser empregado irá depender fundamentalmente da própria cultivar. Para a cultivar Inca, observa-se que os tratamentos onde se utilizaram pré-secagens em estufa de circulação forçada de ar foram mais eficientes para promover a germinação. No entanto, devido à intensa dormência apresentada pela cultivar MG-1, apenas o tratamento onde se utilizou pré-secagem em estufa de circulação forçada de ar a 40°C por 168 horas foi eficaz para superação da dormência das sementes. Este fato reforça os resultados encontrados por Vieira et al. (1985) e Liberal et al. (1972), que demonstraram ser este tratamento o mais eficiente na superação da dormência do arroz. Nota-se, porém, que, para a cultivar MG-1, embora os demais tratamentos de pré-secagem não tenham diferido entre si, o melhor deles não foi capaz de elevar a germinação até o padrão mínimo (85%) estabelecido pela Comissão Estadual de Sementes e Mudas (CESM/MG) (Minas Gerais, 1985).

Os tratamentos com H₂O₂ e envelhecimento acelerado foram pouco eficientes. Apenas o menor tempo de embebição (12 h) e o envelhecimento por 96 horas apresentaram resultados superiores aos da testemunha. Deve ser enfatizado que o aumento do tempo de exposição a esses tratamentos foi acompanhado de uma queda do poder germinativo das sementes.

Os tratamentos com hipoclorito de sódio nos diversos tempos de imersão não foram capazes de superar a dormência das sementes proporcionando respostas semelhantes às da testemunha. Este resultado contrasta com os obtidos por Delouche & Nguyen e Mikkelsen & Surah, citados por Liberal et al. (1972), que consideram o tratamento com hipoclorito de sódio eficiente para estimular a germinação e aumentar o crescimento da plântula de arroz irrigado.

De modo geral, pela comparação entre as duas cultivares, observa-se que a cultivar MG 1 apre-

TABELA 4.	Percentagem	de germina	ção de	sementes	de duas	cultivares	de arroz
	submetidas a	diferentes t	ratament	tos pré-ge	rminativos.	ESAL, I	Lavras-MG,
	1989.						

m		Período	Cultivar		
Tratamentos		de embebição	INCA	MG-1	Média
Embebição em		24 horas	48,0ef	45,0gh	46,5
hipoclorito de		36 horas	42,8efg	22,2i	32,5
sódio 1%		48 horas	53,8def	31,0hi	45,4
Pré-secagem em estufa	40°C	168 horas	98,2a	93,5a	95,8
circulação	50°C	48 horas	97,0a	65,8bcdef	81,4
forçada de ar		96 horas	98,2a	83,0ab	90,6
		24 horas	92,2ab	69,8bcde	81,0
	60°C	48 horas	92,2ab	76,0bcd	84,1
		72 horas	93,0a	79,2bc	86,1
Embebição em		12 horas	78,5bc	62,5cdefg	70,5
H ₂ O ₂		24 horas	68,5cd	62,8cdefg	65,6
20 volumes		36 horas	49,2def	51,5efg	50,4
		48 horas	38,2fg	47,2fgh	42,7
Envelhecimento		96 horas	59,0de	69,5bcde	64,2
acelerado		108 horas	42,2efg	57,98defg	50,0
40°C e 100% UF	₹	120 horas	27,2g	55,2efg	41,2
Sem tratamento					
(Testemunha)			48,5ef	23,8i	36,2
Média			66,3A	59,2B	

Médias seguidas da mesma letra minúscula na coluna e da mesma letra maiúscula na linha, não diferem significativamente entre si pelo teste de Tukey, ao nível de 5% de probabilidade.

senta uma dormência mais intensa e persistente que a cultivar Inca.

Avaliação do efeito de tratamentos pré-germinativos na atividade enzimática da peroxidase

As médias para os efeitos da interação cultivar x tratamento, para atividade enzimática da peroxidase (U/min/g de tecido), encontram-se na Tabela 6.

Pelos resultados obtidos, observa-se maior atividade da peroxidase nas duas cultivares para os tratamentos com hipoclorito de sódio por 48 horas e para a testemunha, o que concorda com os resultados encontrados no estudo da superação da dormência. Neste caso, esses mesmos tratamentos proporcionaram menor percentual de germinação,

o que pode ser explicado pela alta atividade da peroxidase, indicando que esta enzima pode estar competindo pelo oxigênio necessário à germinação.

A menor atividade enzimática da peroxidase foi encontrada quando se utilizou o tratamento com pré-secagem a 40°C por 168 horas, para as duas cultivares. Tal fato sugere que a exposição a altas temperaturas (40°C, 50°C e 60°C) deve ter inibido a atividade enzimática, uma vez que as enzimas de modo geral são sensíveis à elevação de temperatura Reed (1975). A inibição da atividade enzimática proporcionou quebra de dormência em ambas cultivares, sendo que a cultivar Inca mostrou-se mais responsiva do que a MG 1, cuja quebra de dormência, além da atividade enzimática

TABELA 5. Percentagem de sementes dormentes em duas cultivares de arroz submetidas a diferentes tratamentos pré-germinativos. ESAL, Lavras-MG, 1989.

m		Período	Cult	Cultivar	
Tratamentos		de embebição	INCA	MG-1	Média
Embebição em	·	24 horas	50,8a	54,0bc	52,4
hipoclorito de		36 horas	56,2a	76,5a	66,4
sódio 1%		48 horas	45,2a	67,5ab	56,4
Pré-secagem em estufa	40°C	168 horas	0,5d	2,8h	1,6
circulação	50°C	48 horas	2,5d	29,2defg	15,8
forçada de ar		96 horas	1,2d	14,8g	8,0
		24 horas	1,8đ	26,2defg	14,0
	60°C	48 horas	1,2d	21,2efg	11,2
		72 horas	1,2 d	17,0fg	9,1
Embebição em		12 horas	16,0c	34,2de	25,1
H ₂ O ₂		24 horas	24,2bc	34,0def	29,1
20 volumes		36 horas	42,5a	43,2cd	42,8
		48 horas	49,8a	45,0cd	47,4
Envelhecimento)	96 horas	19,5c	17,8fg	18,6
acelerado		108 horas	41,0ab	28,8defg	34,9
40°C e 100% U	TR.	120 horas	55,0a	36,5cde	46,2
Sem tratamento)				
(Testemunha)			49,0a	73,0a	61,0
Média		· · · · ·	27,0B	36,6A	

Médias seguidas da mesma letra minúscula na coluna e da mesma letra maiúscula na linha, não diferem significativamente entre si pelo teste de Tukey, ao nível de 5% de probabilidade.

da peroxidase, pode ter sido influenciada por outros fatores, tais como maior teor de compostos fenólicos (Tabela 1).

Quanto aos efeitos do envelhecimento acelerado e tratamento com H₂O₂, observa-se que a diminuição da atividade enzimática da peroxidase não parece estar relacionada com quebra de dormência. No primeiro tratamento, além de outros fatores, a alta umidade relativa vigente pode ter possibilitado a formação de um filme de água envolvendo as glumelas, o que, segundo Come & Tissaque (1973), impede a difusão do oxigênio para o interior da semente e dificulta sua penetração até o embrião, afetando negativamente o processo germinativo. Com relação ao segundo tratamento, a alta concentração de peróxido de hidrogênio exógeno pode ter sido a causa do efeito

inibitório da atividade enzimática, mascarando os resultados da análise, uma vez que o peróxido de hidrogênio é também uma das substâncias utilizadas na análise de atividade enzimática da peroxidase.

Comparando-se as duas cultivares, observa-se que a cultivar de dormência mais intensa, MG 1, apresentou também atividade enzimática mais alta, o que, juntamente com a presença de inibidores, particularmente compostos fenólicos, pode estar contribuindo para manifestação desse fenômeno. Estes resultados estão de acordo com Harkin & Obst, Abeles, Lavee & Avidan, Greppin & Lewak, citados por Lusso (1989). Cabe ressaltar, porém, que, não apenas a peroxidase mas também outros fatores têm demonstrado estarem envolvi-

TABELA 6.	Resultados médios da atividade enzimática da peroxidase em U/min/g de
	tecido, em sementes de arroz submetidas a diferentes tratamentos pré-
	germinativos. ESAL, Lavras-MG, 1989.

Tratamentos		Período de	Cul	tivar	Média	
114441101100		embebição	INCA	MG-1	Wicala	
Embebição em hipoclorito de sódio 1%		48 horas	94,798b	101,164b	97,981	
Pré-secagem em estufa	40°C	168 horas	47,266e	30,666e	38,966	
circulação forçada de ar	50°C	96 horas	73,565c	61,832c	67,698	
	60°C	72 horas	49,798e	59,266c	54,532	
Embebição em H ₂ O ₂ 20 volumes		12 horas	28,699f	26,166f	27,432	
Envelhecimento acelerado 40°C e 100% U Sem tratamento	TR	96 horas	65,632d	51,632d	58,632	
(Testemunha)	,		133,496a	182,662a	158,079	
Média			70,465B	73,341A	71,903	

Médias seguidas da mesma letra minúscula na coluna e da mesma letra maiúscula na linha, não diferem significativamente entre si pelo teste de Tukey, ao nível de 5% de probabilidade.

dos no controle do processo germinativo de sementes.

CONCLUSÕES

- A pré-secagem de sementes a 40°C/168 horas foi o tratamento mais eficiente para superar a dormência e inibir a enzima peroxidase nas cultivares de arroz irrigado. Inca e MG 1.
- 2. Sementes da cultivar Inca expostas a temperaturas mais elevadas (50°C, 60°C) são capazes de superar a dormência em um tempo consideravelmente menor do que sob 40°C.
- 3. Pré-secagem a temperaturas mais elevadas (50°C/96 horas, 60°C/72 horas), embora tenha sido eficaz na inibição da atividade enzimática para ambas as cultivares, não resultou em significativa quebra de dormência para a cultivar MG 1.
 - 4. A cultivar MG 1 apresentou dormência mais

acentuada e maior atividade da enzima peroxidase do que a cultivar Inca. No entanto, a dormência na MG 1 parece estar relacionada não apenas com a atividade enzimática mas também com a maior ocorrência de compostos fenólicos nas glumelas.

REFERÊNCIAS

AMARAL, A. S.; GONÇALO, J. F. Dormência em sementes de arroz.. Lavoura Arrozeira, Porto Alegre, v.30, n.301, p.35-37, jul/ago. 1977.

AMARAL, A. S.; SILVA, A. M. V. Superação de dormência em sementes de arroz. In: REUNIÃO DA CULTURA DO ARROZ IRRIGADO, 12, 1983, Porto Alegre. Anais. Porto Alegre: IRGA, 1983. p.271-274.

ASSOCIATION OF OFFICIAL ANALYTICAL CHE-MISTS. Official methods of analysis of the As-

Pesq. agropec. bras., Brasília, v.29, n.4, p.535-542, abr. 1994

- sociation of Official Analytical Chemists. 11. ed. Washington: 1970. 1015p.
- BEWLEY, J. D.; BLACK, M. Physiology and biochemistry of seeds in relation to germination. Berlim: Springer-Verlag, 1982. v.2, 375p.
- BRASIL. Ministério da Agricultura. Departamento Nacional de Produção Vegetal. Divisão de Sementes e Mudas. Regras para análise de sementes. Brasília: 1976. 188p.
- CARNEIRO, J. G. A. Curso de silvicultura I. Curitiba: FUPEF, 1986. 131p. Apostila.
- CÍCERO, S. M. Dormência de sementes. In: CÍCERO, S. M.; MARCOS FILHO, J.; SILVA, W. R. da. Primeira semana de atualização em produção de sementes. Piracicaba: Fundação Cargill, 1986. p.41-73.
- COME, D.; TISSAQUE, T. Interrelated effects of inhibition, temperature on oxigen in seed germination. In: HEYDECKER, W. (Ed.). Seed ecology. [s.l.]: The Pennsylvania State University Press, University Park, 1973. p.157-168.
- FRAGA, A. C. Dormência de sementes. **Informe Agro- pecuário**, Belo Horizonte, v.8, n.91, p.62-64, jul. 1982.
- GONÇALO, J. F.; AMARAL, A. S. Estudo de quebra de dormência em sementes de arroz provenientes de hibridações. In: REUNIÃO GERAL DA CUL-TURA DO ARROZ. 6., 1976, Pelotas. Anais. Pelotas: EMBRAPA/IRGA, 1976. p.60-62.
- LIBERAL, O. H. T.; PINHEIRO, F. F. M.; COSTA, W. F.; DUARTE, L. S. N. Ocorrência da dormência em cultivares de arroz. In: SEMINÁRIO BRASI-LEIRO DE SEMENTES, 3, 1970, Recife. Anais. Rio de Janeiro: [s.n.], 1972, p.192-201.

- LOPES, A. de M.; OLIVEIRA, A. F. F. de.; KASS, D. L. Observações sobre quebra de dormência de cultivares de arroz. Belém: IPEAN, 1973. 6p. (IPEAN Comunicado Técnico, 37).
- LUSSO, M. F. de G. Alterações na atividade e no perfil eletroforético da enzima peroxidase em mesocótilos e folhas de milho (Zea mays L.) em resposta à inoculação com Helminthosporium maydis Nisik & Miy., raça o, Helminthosporium carbonum Ullstrup, raça 1 e a injúria mecânica. Piracicaba: ESALQ, 1989. 109p. Tese de Mestrado.
- MATSUNO, H.; URITANI, I. Physiological behavior of peroxidase isosymes in sweet potato root tissue injured by cutting or with blackrot. Plant and Cell Physiology, Tóquio, v.13, p.1091-1101, 1972.
- MINAS GERAIS. Secretaria de Estado da Agricultura. Normas, padrões e procedimentos para a produção de sementes básicas, certificadas e fiscalizadas. 2.ed. Belo Horizonte: 1985. 110p.
- REED, G. Enzymes in food processing. 2.ed. New York: Academic Press, 1975. 573p.
- SWAIN, T.; HILLS, W. S. The phenolic constituents of Prunus domestica. Journal of the Science of Food and Agriculture, London, v.10, p.63-68, Jan. 1959.
- VIEIRA, M. DAS G. G. C.; BORGES, J. W. M.; MORAES, E. A. Ensaio preliminar sobre métodos utilizados na quebra de dormência em sementes de arroz (*Oryza sativa* L.). Ciência e Prática, Lavras, v.9, n.2, p.172-179, 1985.