INOCULAÇÃO, CALAGEM E ADUBAÇÃO PARA MUCUNA-PRETA E FEIJÃO-DE-PORCO NUM SOLO PODZÓLICO VERMELHO-AMARELO¹

EMANUELA FORESTIERI DA GAMA RODRIGUES², HELVÉCIO DE-POLLI³

e PAULO AUGUSTO DA EIRA⁴

RESUMO - Dois experimentos foram conduzidos em casa de vegetação na EMBRAPA/CNPAB, Itaguaí, RJ, num solo Podzólico Vermelho-Amarelo distrófico, série Itaguaí, com o objetivo de testar estirpes de *Rhizobium* em mucuna-preta (*Mucuna aterrima*) e feijão-de-porco (*Canavalia ensiformis*), e testar a calagem e a adubação básica com P, K, S e micronutrientes no desenvolvimento destas duas leguminosas. Foram testadas duas estirpes de *Rhizobium* em cada leguminosa, e uma testemunha sem inoculação, em um esquema fatorial com três doses de calcário, na presença e ausência de adubação básica. A adubação básica promoveu incremento no peso de matéria seca das plantas e dos nódulos e no acúmulo de N total das duas leguminosas, com efeito maior no desenvolvimento vegetativo da mucuna-preta. Houve efeito da calagem quanto a peso de matéria seca das plantas e N total de mucuna-preta. Não houve efeito da calagem para o feijão-de-porco. Em relação à tolerância à acidez e à baixa fertilidade do solo, o feijão-de-porco mostrou-se mais promissor. Não houve efeito da inoculação com estirpes de *Rhizobium* selecionadas, quando comparada com a nodulação espontânea.

Termos para indexação: adubo verde, Rhizobium, fósforo, potássio, enxofre, micronutrientes, Mucuna aterrima, Canavalia ensiformis.

INOCULATION, LIMING AND FERTILIZATION OF MUCUNA ATERRIMA AND CANAVALIA ENSIFORMIS IN A RED-YELLOW PODZOLIC SOIL

ABSTRACT - Two greenhouse experiments were conducted at EMBRAPA/CNPAB in a Red-Yellow Podzolic, Itaguaí series, distrophic soil. Rhizobium inoculation was tested of velvetbean (Mucuna aterrima) and jackbean (Canavalia ensiformis) and lime, P, K, S and micronutrients amendments for these two legumes. Two Rhizobium strains were tested for each plant and a control without inoculation in a factorial design with three liming levels in the presence and absence of P, K, S and micronutrients as basic soil fertilization. The basic fertilization promoted an increase on the plant and nodule weight, and total plant nitrogen content principally in velvetbean. Liming gave a positive effect for plant weight and total N of velvetbean and no effect over jackbean. Jackbean showed higher tolerance for low fertility acid soil. These was no difference between rhizobium strains inoculation compared with the spontaneous nodulation.

Index terms: green manure, Rhizobium, phosphorus, potassium, sulphur, micronutrients.

INTRODUÇÃO

O solo Podzólico Vermelho-Amarelo distrófico (PVd), série Itaguaí, apresenta limitações que impedem a obtenção de altas produtividades das culturas (De-Polli et al., 1976, 1979, 1992), razão pela qual, alguns trabalhos com o emprego da

Pesq. agropec. bras., Brasília, v.29, n.5, p.807-814, maio 1994

Aceito para publicação em 10 de janeiro de 1994.
Trabalho apresentado no XXII Congresso Brasileiro de Ciência do Solo, em Recife (PE), 24-28 de julho de 1989.

² Enga. - Agra., M.Sc., ÉMBRAPA-Centro Nacional de Pesquisa de Agrobiologia (CNPAB). Bolsista do CNPq.

³ Eng. - Agr., Ph.D., EMBRAPA-CNPAB, Caixa Postal 74505, CEP 23851-970, Km 47, Seropédica, Itaguaí, RJ.

⁴ Eng. - Agr., M.Sc., EMBRAPA-CNPAB.

adubação verde (De-Polli & Chada, 1989; Forestieri & De Polli, 1990) têm sido conduzidos para melhorar sua fertilidade. Forestieri & De--Polli (1990), em experimentos realizados em casa de vegetação, nesse mesmo solo, com milho e mucuna-preta, observaram que a calagem proporcionou acréscimo na matéria seca e no N total da parte aérea do milho e da mucuna-preta, e aumento no peso de nódulos da leguminosa. A adubação com S favoreceu o desenvolvimento do milho. mas prejudicou o da mucuna-preta. Esse efeito prejudicial na mucuna-preta foi corrigido quando a aplicação do S foi feita junto com a calagem. Por outro lado, a aplicação de micronutrientes teve efeito mais acentuado na mucuna-preta do que no milho.

Para o melhor desenvolvimento das leguminosas utilizadas como adubo verde nesse solo, além de alguma correção da fertilidade do solo, pode ser necessária a obtenção de estirpes de *Rhizobium* eficientes para cada uma das espécies, visando à maximização da fixação biológica do N atmosférico.

Os trabalhos relacionados com a capacidade de nodulação e a eficiência da inoculação nessas espécies usadas para adubo verde, são escassos. Chada & De-Polli (1988) estudaram, em condições de casa de vegetação e em solo PVd, série Itaguaí, a eficiência das estirpes então disponíveis para uso na inoculação de nove leguminosas tropicais para adubação verde. Os resultados verificados pelos autores indicaram que o potencial máximo de produção nas espécies testadas não havia sido atingido só com a fixação simbiótica, sendo assim importante a obtenção de estirpes mais eficientes.

O objetivo do presente trabalho foi o de testar a eficiência da inoculação de estirpes selecionadas de *Rhizobium* em mucuna-preta e em feijão-de-porco, verificando, em condições de casa de vegetação, o desenvolvimento destas leguminosas usadas como adubos verdes, em solo PVd, série Itaguaí, na presença de calagem e de adubação básica de P, K, S e micronutrientes.

MATERIAL E MÉTODOS

Dois experimentos foram conduzidos em casa de

vegetação na EMBRAPA/CNPAB, no período de 10.08.88 a 05.10.88, um com mucuna-preta (Mucuna aterrima) e outro com feijão-de-porco (Canavalia ensiformis). O solo é um Podzólico Vermelho-Amarelo distrófico (PVd), série Itaguaí, coletado na profundidade, de 0 a 20 cm, cuja análise para fins de fertilidade, de acordo com a EMBRAPA (1979), apresentou os seguintes resultados: pH em água (relação solo:água, 1:2,5) = 5,2; 0,3 mcq de Al⁺⁺⁺, 3,2 mcq de Ca⁺⁺ e 2,4 mcq de Mg⁺⁺, por 100 ml de solo; 7,8 ppm de P e 106 ppm de K. As unidades experimentais constaram de vasos de plástico, com 3 kg de solo.

O delineamento experimental, nos dois experimentos, foi o de blocos ao acaso, em fatorial 4 x 3 x 2, com três repetições. Os tratamentos constaram de quatro fontes de N: testemunha, adubação com N mineral e inoculação de duas estirpes de Rhizobium; três doses de calcário dolomítico calcinado: 0, 0,6 e 1,2 g/kg de solo; e duas doses (sem e com) de adubação básica aplicada no plantio. Nos tratamentos com N mineral, a fonte usada foi a uréia, parcelando-se em três aplicações, num total de 60 mg de N/kg de solo. As estirpes usadas na mucuna-preta foram as mesmas utilizadas por Forestieri & De-Polli (1990): BR-7701 (= 6 H3, EMBRAPA/CNPAB) e BR-7702 (= TAL 574. Niftal-Hawaii). As utilizadas em feijão-de-porço foram: (= IJ, EMBRAPA/CPAC) e BR-3102 (= SMS300, IAC). A calagem foi feita com base em curva de neutralização, com as doses 1 e 2, correspondendo a aplicações, no campo, de 1,2 e 2,4 t de calcário/ha, respectivamente. Os tratamentos com adubação básica receberam, em mg/kg de solo: 150 de P₂O₅, 90 de K₂O, 105 de S e 20 de "frita", usando-se o superfosfato simples como fonte de P e S, e o cloreto de potássio com fonte de K. A "frita" utilizada tem a seguinte composição: 3,85% de Fe; 2,17% de B; 9,24% de Zn; 0,80% de Cu; 0,13% de Mo, e 3,48% de Mn. A adubação básica foi resultado de adaptações feitas nas utilizadas por De-Polli & Döbereiner (1974) e Almeida et al. (1988). As sementes foram previamente desinfetadas com álcool e bicloreto de mercúrio, recebendo, então, o inóculo imediatamente antes do plantio, conforme o indicado por De Polli & Franco (1985), Uma semana após a semeadura foi efetuado o desbaste, deixando-se em cada vaso duas plantas, que foram colhidas com oito semanas.

Os parâmetros avaliados foram: matéria seca da parte aérea; peso de matéria seca de nódulos e N total da parte aérea. O N foi determinado pelo método Kjeldahl semimicro, em material seco a 65°C.

Os procedimentos estatísticos constaram de análise de variância, com verificação de significância pelo teste F. Para as fontes de variação onde houve diferença significativa, aplicou-se o teste de Tukey a 5%, para comparação entre médias.

RESULTADOS E DISCUSSÃO

Nos dois experimentos, a análise estatística revelou diferenças significativas no peso de matéria seca de nódulos das duas leguminosas, para fontes de N, doses de adubação e a interação dessas duas variáveis. A adubação básica acarretou aumentos no peso de matéria seca de nódulos, da mucuna--preta e do feijão-de-porco (Tabela 1). Forestieri & De-Polli (1990), em experimentos de casa de vegetação com mucuna-preta, verificaram que só a adubação com micronutrientes promoveu decréscimo no peso de nódulos; mas na presença de calagem e adubação com S, esse problema foi corrigido. A inoculação na mucuna-preta propiciou peso de matéria seca de nódulos semelhantes ao do tratamento sem inoculação, na presença ou não de calagem e adubação básica. Já no feijão--de-porco, o mesmo fato ocorreu na ausência da adubação básica; mas na presença da adubação básica, o peso de matéria seca de nódulos foi significativamente maior no tratamento sem inoculação. Forestieri & De-Polli (1990) também não verificaram diferença significativa no peso de matéria seca de nódulos de mucuna-preta com a inoculação. A aplicação de N-uréia, comparada com a média dos dois tratamentos com inoculação, reduziu o peso de nódulos da mucuna-preta e do feijão-de-porco (Tabela 1).

A análise estatística revelou diferença significativa das fontes de N, doses de adubação básica, interação dessas duas variáveis e doses de calcário, como também do peso da matéria seca da parte aérea da mucuna-preta; também revelou diferença significativa das fontes de N, doses de adubação básica e interação tripla de fontes de N, doses de adubação básica e de calcário do feijão-de-porco (Tabela 2). O peso da matéria seca da parte aérea das duas leguminosas inoculadas com as estirpes selecionadas não diferiu do verificado com a testemunha sem inoculação. Quanto à mucuna-preta, a média geral da testemunha sem inoculação não diferiu do tratamento com N-uréia. A aplicação de N-uréia aumentou o peso da matéria

seca da parte aérea da mucuna-preta e do feijãode-porco. Quanto ao feijão-de-porco o aumento de peso se verifica com e sem adubação básica, e quanto à mucuna-preta ele só ocorre na presença da adubação básica.

A análise estatística revelou diferença significativa de fontes de N e de doses de adubação básica no acúmulo de N total na parte aérea das duas leguminosas como também das doses de calcário e da interação calcário x adubação básica no caso da mucuna-preta (Tabela 3). Não houve diferença do N total acumulado nas duas leguminosas, entre os tratamentos com as estirpes selecionadas e a testemunha.

Forestieri & De-Polli (1990) também observaram incremento da calagem, não só na produção de matéria seca e no acúmulo do N total da parte aérea da mucuna-preta, como foi verificado neste trabalho, mas também no peso de matéria seca de nódulos.

Neste trabalho, os resultados de produção de matéria seca e de N total da parte aérea evidenciam que o feijão-de-porco é uma planta mais tolerante à acidez do solo do que a mucuna-preta, sendo este um dos fatores que, segundo Chada & De-Polli (1988), caracterizam sua maior rusticidade. Em experimento de casa de vegetação, estudando o efeito da calagem em treze espécies de utilizadas como adubo verde, leguminosas Abboud (1986) verificou que feijão-de-porco. feijão-bravo-do-ceará e mucuna-preta não responderam à calagem, mas as duas primeiras apresentaram maior produção de matéria seca da parte aérea, nodulação mais uniforme e peso de nódulos mais altos do que as demais espécies testadas.

A aplicação de N-uréia, em comparação com a média dos tratamentos inoculados, proporcionou aumento no N total da parte aérea das duas leguminosas, maior no caso do feijão-de-porco do que na mucuna-preta, mas seu efeito na produção de matéria seca foi maior na mucuna-preta. Quanto à adubação básica, com P, K, S e micronutrientes, os maiores incrementos, tanto de matéria seca quanto de N total da parte aérea, foram verificados na mucuna-preta, demonstrando ser esta espécie mais exigente que o feijão-de-porco, em termos de fertilidade do solo. Forestieri & De-Polli (1990) observaram efeito negativo da adubação com S,

TABELA 1. Peso da matéria seca dos nódulos de mucuna-preta e de feijão-deporco, em solo PVd, série Itaguaí, com quatro fontes de N, três doses de calcário e duas de adubação. Resultados médios de três repetições, em mg/2 plantas².

Calagem e adubação ¹	Fontes de N				_
	Rhizobium		N-uréia	Testemunha	Média
	BR-7701	BR-7702			
Cal ₀ Ad. 0	333	400	0	400	283
Cal ₁ Ad. 0	300	300	0	300	225
Cal ₂ Ad. 0	433	300	0	233	242
Média	355	333	0	311	250B
Cal ₀ Ad. I	833	700	233	667	608
Cal ₁ Ad. 1	800	933	167	933	708
Cal ₂ Ad. 1	700	667	167	700	558
Média	778	767	189	767	625A
Média geral	566a	550a	94b	539a	
Feijão-de-porco			*		
Calagem e	Fontes de N				
adubação ¹	Phizo	bium	N-uréia	Т	Média
	BR-3102	BR-2003	N-ureia	Testemunha	
Cal ₀ Ad, 0	300	300	0	367	242
Cal ₁ Ad. 0	333	267	0	267	217
Cal ₂ Ad. 0	333	333	0	433	275
Média	322	300	0	356	245B
Cal ₀ Ad. 1	600	667	167	1033	617
Cal ₁ Ad. 1	933	1133	133	833	758
Cal ₂ Ad. 1	633	867	133	1300	733
Média	722ь	889a	144c	1055a	703A
Média geral	522b	594ab	72c	706a	-

Cal₀, Cal₁, Cal₂ = 0; 0,6 e 1,2 g de calcário/kg de solo, respectivamente. Ad. 0, Ad.
 I = sem e com adubação básica de P, K, S e micronutrientes.

² Médias seguidas das mesmas letras, maiúsculas nas colunas e minúsculas nas linhas, não diferem significativamente (Tukey 5%).

TABELA 2. Peso da matéria seca da parte aérea de mucuna-preta e de feijão-deporco, em solo PVd, série Itaguaí, com quatro fontes de N, três doses de calcário e duas de adubação. Resultados médios de três repetições, em g/2 plantas².

Mu	cuna-	preta
----	-------	-------

0.1	Fontes de N				N 444!-
Calagem e adubação ¹	Rhizobium		N-uréia	Testemunha	Média
	BR-7701	BR-7702			
Cal ₀ Ad. 0	6,50	6,67	6,47	7,60	6,81
Cal ₁ Ad. 0	7,87	7,93	8,20	7,27	7,82
Cal ₂ Ad. 0	6,73	7,20	6,87	7,50	7,08
Média	7,03	7,27	7,18	7,46	7,24B
Cal ₀ Ad. 1	8,30	7,57	11,53	8,27	8,92
Cal ₁ Ad. 1	10,37	9,90	11,97	10,07	10,58
Cal ₂ Ad. I	8,83	9,37	12,60	11,50	10,58
Média	9,17	8,95	12,03	9,95	10,02A
Média geral	8,10b	8,11b	9,60a	8,70ab	-
Feijão-de-porco					
	Fontes de N				
Calagem e adubação ¹	Rhizobium		N-uréia	Testemunha	Média
adubação ·	BR-3102		14-dicia	restomanna	
Cal ₀ Ad. 0	12,80	13,13	15,20	14,50	13,91
Cal, Ad. 0	16,20	12,77	14,90	13,43	14,32
Cal ₂ Ad. 0	12,80	13,47	15,10	14,00	13,84
Média	13,93	13,12	15,07	13,98	14,02E
Cal ₀ Ad. 1	14,13	15,73	16,87	13,70	15,11
Cal ₁ Ad. 1	14,10	15,90	17,27	14,23	15,38
Cal ₂ Ad. 1	15,07	13,77	16,40	15,73	15,24
Média	14,43	15,13	16,85	14,55	15,24
Média geral	14,18b	14,12b	15,96a	14,26b	-

 ¹ Cal₀, Cal₁, Cal₂ = 0; 0,6 e 1,2 g de calcário/kg de solo, respectivamente. Ad. 0, Ad.
 1 = sem e com adubação básica de P, K, S e micronutrientes.

² Médias seguidas das mesmas letras, maiúsculas nas colunas e minúsculas nas linhas, não diferem significativamente (Tukey 5%).

TABELA 3. N total da parte aérea de mucuna-preta e de feijão-de-porco, em solo PVd, série Itaguaí, com quatro fontes de N, três doses de calcário e duas de adubação. Resultados médios de três repetições, em mg/2 plantas².

Calagem e adubação ¹	Fontes de N				> 4 / P
	Rhizobium		N-uréia	Testemunha	Média
	BR-7701	BR-7702			
Cal ₀ Ad. 0	177	107	200	120	151
Cal ₁ Ad. 0	143	240	290	130	201
Cal ₂ Ad. 0	153	143	233	123	163
Média	158	163	241	124	172B

Cal_1 Ad. 1 Cal_2 Ad. 1	380	347	420	343	372
	250	293	370	357	318
Média	277	271	367	303	304A

310

304a

223

210

214b

173

217b

Feijão-de-porco

Média geral

Calo Ad. 1

200

218b

Mucuna-preta

Calagem e adubação ¹	Fontes de N				3.67.4!-
	Rhizo BR-3102	bium BR-2003	N-uréia	Testemunha	Média
Cal ₀ Ad. 0 Cal ₁ Ad. 0	187 237	240 273	417 457	260 220	276 297
Cal ₂ Ad. 0	233	240	423	260	289
Média	219	251	432	247	287B
Cal ₀ Ad. 1	260	257	400	250	292
Cal ₁ Ad. 1 Cal ₂ Ad. 1	347 260	367 357	440 410	207 340	340 342
Média	289	327	417	266	325A
Média geral	254b	289b	424a	256b	-

¹ Cal₀, Cal₁, Cal₂ = 0; 0,6 e 1,2 g de calcário/kg de solo, respectivamente. Ad. 0, Ad. 1 = sem e com adubação básica de P, K, S e micronutrientes.

² Médias seguidas das mesmas letras, maiúsculas nas colunas e minúsculas nas linhas, não diferem significativamente (Tukey 5%).

no peso de matéria seca de nódulos e na produção de matéria seca, e acúmulo de N total na parte aérea de mucuna-preta, neste mesmo solo, mas tal efeito foi corrigido com a calagem. Silva et al. (1985) verificaram aumento no teor de K na camada superficial (0 a 20 cm) de um Latossolo Vermelho-Amarelo, cultivado com mucuna-preta, sugerindo o papel desta leguminosa como mobilizadora de nutrientes das camadas inferiores do solo.

Chada & De-Polli (1988) observaram que o feijão-de-porco apresentou melhor nodulação, produção de massa e N total acumulado, que as oito outras espécies de leguminosas para adubo verde testadas.

No presente trabalho, apesar de apresentar peso de nódulos semelhante ao da mucuna-preta, o feijão-de-porco teve maior produção de matéria seca e de N total da parte aérea, o que corrobora o verificado por Chada & De-Polli (1988), que indicam o feijão-de-porco como a leguminosa mais promissora para uso como adubo verde em solos com baixa fertilidade.

CONCLUSÕES

- 1. A inoculação com estirpes selecionadas de rizóbio e a nodulação espontânea propiciaram o mesmo desempenho para as duas leguminosas.
- 2. A adubação com P, K, S e micronutrientes promoveu efeitos positivos na nodulação e no desenvolvimento vegetativo das duas leguminosas, mas esse efeito foi menor no desenvolvimento vegetativo do feijão-de-porco do que no da mucuna-preta.
- 3. A calagem favoreceu o desenvolvimento vegetativo da mucuna-preta, mas não afetou o peso de nódulos e o desenvolvimento vegetativo do feijão-de-porco, nem o peso de nódulos da mucuna-preta.
- 4. O feijão-de-porco produziu mais matéria seca e N total que a mucuna-preta, o que demonstra maior adequabilidade dele a solos com baixa fertilidade.

REFERÊNCIAS

ABBOUD, A.C. de S. Eficiência da adubação verde associada a fosfato natural de Patos de Minas. Itaguaí: UFRRJ, 1986. 296p. Tese de Mestrado.

- ALMEIDA, D.L. de; SANTOS, G. de A.; DE-POLLI, H.; CUNHA, L.H.; FREIRE, L.R.; AMARAL SOBRINHO, N.M.B. do; PEREIRA, N.N.C.; EIRA, P.A. da; BLOISE, R.M.; SALEK, R.C. Manual de adubação para o Estado do Rio de Janeiro. Itaguaí: Universidade Rural, 1988, 179p. (Coleção Universidade Rural. Ciências Agrárias, 2).
- CHADA, S. de S.; DE-POLLI, H. Nodulação de leguminosas tropicais promissoras para adubação verde em solo deficiente em fósforo. Pesquisa Agropecuária Brasileira, Brasília, v.23, p.1197-1202, 1988.
- DE-POLLI, H.; CARVALHO, S.R. de; LEMOS, P.F.; FRANCO, A.A. Efeito de micronutrientes no estabelecimento e persistência de leguminosas em pastagem de morro em solo Podzólico Vermelho--Amarelo. Revista Brasileira de Ciência do Solo, Campinas, v.3, p.154-157, 1979.
- DE-POLLI, H.; SUHET, A.R.; FRANCO, A.A. Micronutrientes limitando a fixação de nitrogênio atmosférico e produção de centrosema em solo Podzólico Vermelho-Amarelo. In: CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 15., Campinas. Anais... Campinas: Sociedade Brasileira de Ciência do Solo, 1976. p.151-156.
- DE-POLLI, H.; CHADA, S. de S. Adubação verde incorporada ou em cobertura na produção de milho em solo de baixo potencial de produtividade. Revista Brasileira de Ciência do Solo, Campinas, v.13, p.287-293, 1989.
- DE-POLLI, H.; DÖBEREINER, J. Deficiência de micronutrientes em solo Podzólico Vermelho-Amarelo e sua correção com "Pellet" de F.T.E. Pesquisa Agropecuária Brasileira, série agronomia, Rio de Janeiro, v.9, p.93-99, 1974.
- DE-POLLI, H.; FORESTIERI, E.F.; ALMEIDA, D.L. de; SOUSA, R.L.P. de. Adubação e crescimento do milho em solo oriundo de experimento de campo de longa duração. Revista Brasileira de Ciência do Solo, Campinas, v.16, p.343-348, 1992.
- DE-POLLI, H.; FRANCO, A.A. Inoculação de sementes de leguminosas. Itaguaí: EMBRAPA-UAPNPBS, 1985. 31p. (EMBRAPA-UAPNPBS. Circular Técnica, 1).
- EMBRAPA. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). Manual de métodos de análise de solo. Rio de Janeiro, 1979. n.p.

FORESTIERI, E.F.; DE-POLLI, H. Calagem, enxofre e micronutrientes no crescimento do milho e da mucuna-preta num Podzólico Vermelho-Amarelo. Revista Brasileira de Ciência do Solo, Campinas, v.14, p.167-172, 1990.

SILVA, E.M.R. da; ALMEIDA, D.L. de; FRANCO, A.A.; DÖBEREINER, J. Adubação verde no aproveitamento de fosfato em solo ácido. Revista Brasileira de Ciência do Solo, Campinas, v.9, p.85--88, 1985.