Influência da irrigação e do genótipo na produção de castanha em cajueiro-anão-precoce⁽¹⁾

Vitor Hugo de Oliveira⁽²⁾, Levi de Moura Barros⁽²⁾ e Raimundo Nonato de Lima⁽²⁾

Resumo – Avaliou-se a influência da irrigação e do genótipo na produção de castanha em cajueiro-anão-precoce (*Anacardium occidentale* L.) durante três anos. Foram estudados três clones (CP 09, CP 76 e CP 1001) e quatro regimes hídricos (testemunha sem irrigação e intervalos de irrigação de um, três e cinco dias). O delineamento experimental foi em blocos ao acaso, em parcelas subsubdivididas, com quatro repetições, com os regimes hídricos nas parcelas, os clones nas subparcelas, cada uma com quatro plantas, e os anos de produção nas subsubparcelas. A quantidade de água aplicada nos três tratamentos irrigados baseou-se na evaporação do tanque classe A. Em relação à produção de castanha, os clones de cajueiro-anão-precoce não apresentaram comportamento diferencial em resposta à irrigação; os clones CP 09 e CP 76 mostraram-se superiores ao CP 1001 quanto à estabilidade de safra; independentemente do regime hídrico estudado, o clone CP 76 mostrou-se menos produtivo do que os clones CP 09 e CP 1001.

Termos para indexação: Anacardium occidentale, regime hídrico do solo, produtividade, fenologia.

Influence of irrigation and genotype on the nut production of precocious dwarf cashew

Abstract – The influence of irrigation and genotype on the nut yield of tree dwarf cashew (*Anacardium occidentale* L.) was evaluated in a three-year trial. Three clones (CP 09, CP 76 and CP 1001) and four irrigation treatments (control - without irrigation, irrigation at one, three and five days interval) were studied. The experimental design was in randomized blocks, with split-split plots and four replications, irrigation levels in plots, clones in split-plot, each one with four plants, and years of production in split-split plots. The amount of water applied in three irrigated treatments was based on information from a class A evaporation pan. Concerning cashew nut production, cashew dwarf clones did not show a differentiation as to irrigation treatments; clones CP 09 and CP 76 showed better performance than CP 1001 on stability of nut production; clone CP 76, independently of irrigation treatments used, showed less productivity than clones CP 09 and CP 1001.

Index terms: Anacardium occidentale, soil water regimes, productivity, phenology.

Introdução

Historicamente, o cajueiro tem sido considerado uma planta resistente e adaptada à seca, sendo muitas vezes o único cultivo a produzir em condições extremamente adversas, o que provavelmente explica o desinteresse, expresso até recentemente, em verificar se a cultura responderia bem à irrigação (Oliveira et al., 1998b). Em decorrência disso, a maioria das áreas cultivadas com o cajueiro existentes no Brasil foi implantada sob regime de sequeiro, com base na premissa de que a planta pode ser cultivada sob extrema adversidade hídrica (Oliveira et al., 1995).

Apesar da reduzida produtividade dos pomares de cajueiro comum (200 kg ha-1 de castanha) e de anão-precoce (906 kg ha-1 de castanha) (Pessoa et al., 2000) cultivados sob sequeiro, são escassos os estudos e as informações de pesquisa, em nível mundial, sobre irrigação nessa cultura.

Estudos preliminares revelaram produções de castanha de plantas de cajueiro-anão-precoce, sob irrigação localizada, superiores às do cajueiro culti-

⁽¹⁾ Aceito para publicação em 12 de agosto de 2002.

Extraído da tese de doutorado apresentada pelo primeiro autor à Universidade Federal do Ceará, Fortaleza, CE.

⁽²⁾ Embrapa-Centro Nacional de Pesquisa de Agroindústria Tropical, Caixa Postal 3761, CEP 60511-110 Fortaleza, CE. E-mail: vitor@cnpat.embrapa.br, levi@cnpat.embrapa.br, rlima@cnpat.embrapa.br

vado sob sequeiro (Saunders et al., 1995). Entretanto, a natureza e a dimensão da resposta da planta a distintos regimes hídricos ainda não foram quantificadas em termos dos caracteres produtivos. Tais resultados suprirão a demanda atual de um segmento de cajucultores que pretende se especializar, mediante o emprego da irrigação, na produção de pedúnculo de mesa, no período da entressafra, num primeiro instante, e, numa segunda fase, no aproveitamento total do pedúnculo na indústria de sucos e refrigerantes, doces, cajuína e outros derivados, além da perspectiva de maior produtividade de castanha (Oliveira et al., 1995).

O objetivo deste trabalho foi avaliar a produção de castanha dos clones de cajueiro-anão-precoce quando submetidos a diferentes regimes hídricos.

Material e Métodos

O trabalho foi realizado no Campo Experimental do Curu, da Embrapa-Centro Nacional de Pesquisa de Agroindústria Tropical, localizado no Município de Paraipaba, CE, latitude de 3°26' S, longitude de 39°8' W e 31 m de altitude. A região apresenta tipo climático Bw da classificação de Köppen, com temperatura média anual de 28,1°C e precipitação pluvial média anual de 923,7 mm, concentrada nos meses de janeiro a junho. Na Tabela 1 são apresentadas as principais características climáticas registradas durante a realização do experimento (Embrapa 1998a, 1998b, 1998c). O solo da área experimental pertence à unidade de mapeamento Podzólico Vermelho-Amarelo distrófico, A fraco, textura arenosa, fase caatinga litorânea, relevo plano.

Mudas enxertadas de cajueiro-anão-precoce, clones CP 09, CP 76 e CP 1001, foram plantadas em 21 de novembro de 1994, no espaçamento de 7,0x7,0 m e submetidas a quatro tratamentos: testemunha (sem irrigação), intervalo de irrigação de um dia, intervalo de irrigação de três dias e intervalo de irrigação de cinco dias. O delineamento experimental adotado foi em blocos ao acaso, com quatro repetições (uma planta/repetição), em parcelas subdivididas, em que os quatro regimes hídricos foram estudados nas parcelas e os três clones distribuídos espacialmente nas subparcelas, constituídas de quatro plantas.

O método de irrigação usado foi o de microirrigação, do tipo microaspersão, empregando-se um microaspersor autocompensante por planta, com vazão de 44 L hora-1. Na determinação da quantidade de água aplicada em cada

Tabela 1. Médias mensais e anuais de temperatura, umidade relativa, precipitação pluvial e insolação do Campo Experimental de Paraipaba nos anos de 1996,

1997 e 1998. Paraipaba, CE, 1999.	araipaba, Cl	E, 1999.										
Mês	Temperatu	eratura média (°C)	a (°C)	Umi	Umidade relativa (%)	ı (%)	Precipi	Precipitação pluvial (mm)	al (mm)	Insol	Insolação (hora/mês)	ıês)
	1996	1997	1998	1996	1997	1998	1996	1997	1998	1996	1997	1998
Janeiro	22,9	28,6	28,2	71	63	77	110,1	9,2	175,8	218,1	241,5	177,9
Fevereiro	23,5	28,2	28,6	74	59	92	96,4	12,7	0,99	215,8	251,0	242,6
Março	26,7	28,1	28,3	85	70	81	565,8	162,0	176,7	127,5	206,3	221,7
Abril	26,7	27,1	28,7	85	77	92	311,4	224,9	6'06	123,2	172,2	204,5
Maio	26,9	26,4	28,4	77	78	72	158,9	153,4	85,9	195,6	209,3	270,9
Junho	26,9	26,4	27,9	71	71	99	18,0	3,7	34,8	253,1	298,2	271,1
Julho	27,1	27,1	27,6	65	59	65	19,8	8,4	3,5	271,7	313,6	298,0
Agosto	27,6	27,4	27,9	09	09	65	10,0	4,2	14,1	279,7	303,4	319,5
Setembro	28,2	27,7	28,3	09	62	65	1,4	0,0	0,0	288,1	296,9	311,6
Outubro	28,0	28,0	28,1	<i>L</i> 9	57	69	5,6	2,8	4,8	292,6	302,4	316,3
Novembro	28,1	28,3	27,9	99	59	73	11,2	7,2	0,0	279,6	283,8	286,8
Dezembro	28,3	28,5	27,5	92	61	09	4,3	9,3	5,5	304,4	299,4	298,6
Média	26,7	27,7	28,1	71	65	70	109,4	49,8	54,8	237,4	264,8	268,2

irrigação, nos diferentes tratamentos, utilizou-se a evaporação obtida no tanque classe A instalado nas imediações do experimento.

No cálculo das diferentes lâminas d'água empregadas, foram utilizadas as seguintes expressões:

$$\begin{split} &ET_C=ECA~x~K_t~x~K_c~,~~(1)\\ &em~que:~ET_C~\acute{e}~a~evapotranspiração~de~cultivo~diária~(mm);\\ &ECA~\acute{e}~a~evaporação~diária~do~tanque~classe~A~padrão~(mm);\\ &K_t~\acute{e}~o~coeficiente~de~tanque~(0,65),~obtido~a~partir~dos~dados~climáticos~da~região,~segundo~Doorenbos~\&~Pruitt~(1984);~e~K_c~\acute{e}~o~coeficiente~de~cultivo,~variável~de~acordo~com~a~idade~da~planta,~segundo~Saunders~et~al.~(1995):~1^{\circ}~ano,~K_c=0,50;~2^{\circ}~ano,~K_c=0,55;~3^{\circ}~ano,~K_c=0,60;\\ &V=(A~x~fc~x~ETc)/EI,~~(2) \end{split}$$

em que: V é o volume aplicado por planta/dia, em litros; A é a área ocupada pela cultura (m²); fc é o fator de cobertura (relação entre a área molhada e a área ocupada pela cultura: 0,15, 0,30 e 0,35, respectivamente, em relação ao 1º, 2º e 3º ano); EI é a eficiência de irrigação (%).

As colheitas foram realizadas manualmente, três vezes por semana, durante o período de produção. Os frutos (castanhas), após colhidos, foram destacados dos pedúnculos e submetidos à pesagem, utilizando-se balança semi-analítica, obtendo-se, assim, a produção de cada planta ao longo do experimento. Os frutos com desenvolvimento fisiológico incompleto foram considerados refugos e não incluídos na pesagem.

Em 1996, foram aplicados 180 g de N/planta/ano (uréia) e 80 g de K_2 O/planta (cloreto de potássio) em parcelas mensais nas plantas irrigadas, via fertirrigação. O P_2O_5 (superfosfato simples) foi aplicado no solo em dose única (80 g/planta/ano), no início do ano, junto com a primeira dose de N e de potássio.

Em 1997, foram aplicados 120 g de P_2O_5 /planta, e as adubações nitrogenada (200 g de N) e potássica (120 g de K_2O /planta) passaram a ser feitas a cada 15 dias. Em 1998, empregou-se o mesmo critério de aplicação de fertilizantes dos anos anteriores, exceto quanto ao parcelamento da fertirrigação, que passou a ser semanalmente nos tratamentos irrigados, nas seguintes quantidades/planta: 200 g de N, 140 g de P_2O_5 e 160 g de K_2O . Como fonte de micronutrientes, foram aplicados anualmente em todos os tratamentos 50 g de FTE BR-12 por planta.

Nas plantas não irrigadas, nos três anos mencionados, as adubações foram feitas em cobertura, sob a projeção da copa da planta, parceladas em três vezes, durante o período chuvoso, mantendo-se as mesmas doses dos tratamentos irrigados.

Realizou-se uma análise conjunta, em parcelas subsubdivididas no tempo, para estudo do efeito dos três anos de avaliação sobre os regimes hídricos e clones. Os resultados de cada planta foram totalizados na estimação das variáveis estudadas. Na comparação das médias, utilizou-se o teste de Tukey a 5% e a 1% de probabilidade. Na verificação da homogeneidade de variâncias, todas as variáveis foram submetidas ao teste de Bartlett, que indicou ser desnecessária a transformação de quaisquer delas.

Resultados e Discussão

Os fatores clone e ano de colheita, isoladamente, e as interações clone x ano de colheita e ano de colheita x regime hídrico influenciaram significativamente a variável produção de castanha (Tabela 2). Não houve significância estatística em relação ao regime hídrico e em relação às interações entre regime hídrico x clone e ano de colheita x regime hídrico x clone.

Houve diferença estatística quanto à interação regime hídrico x ano de colheita em relação à variável produção de castanha. Enquanto em 1996 e 1997 não houve diferença estatisticamente significativa entre os valores médios de produção de castanha obtidos nos diferentes regimes hídricos, em 1998 os tratamentos submetidos à irrigação diferiram significativamente do tratamento não irrigado (Tabela 3). A idade das plantas pode ter contribuído para a reduzida resposta à irrigação no primeiro e no segundo ano, observando-se que no ano de instalação, a pluviosidade não determinou limitações ao desenvolvimento inicial das plantas, quer de sequeiro, quer

Tabela 2. Quadrados médios da análise de variância em relação à produção de castanha de caju em clones de cajueiro-anão-precoce submetidos a diferentes regimes hídricos. Paraipaba, CE, 1999⁽¹⁾.

	nédios .450,18 ^{ns}
D1 2 520	450 18ns
Bloco 3 532	.750,10
Regime hídrico 3 725	.867,95 ^{ns}
	.537,07
Clone 2 2.302	.643,12**
Regime hídrico x clone 6 263	.461,17 ^{ns}
Erro B (bloco x clone (regime hídrico)) 266	.323,26
	.349,45**
	.973,36**
Clone x ano de colheita 4 290	.825,18**
Resíduo 72 23	.793,83

⁽¹⁾Os coeficientes de variação em relação aos erros A, B e C foram 49,70%, 49,04% e 14,66%, respectivamente. ns Não-significativo. **Significativo a 1% de probabilidade pelo teste F.

irrigadas. Nessa fase da vida da planta ocorre um maior investimento no crescimento vegetativo em detrimento do reprodutivo. Segundo Nambiar (1977), a elevada produtividade do cajueiro está associada ao crescimento vegetativo moderado das plantas.

Oliveira et al. (1996) e Crisóstomo et al. (1998) também constataram que os clones CP 09 e CP 76, respectivamente, não apresentaram diferença estatística em relação à variável produção de castanha.

O fator ano de colheita, por sua vez, influenciou significativamente a produção de castanha, observando-se no segundo e terceiro ano incrementos de 48,65% e 30,09%, respectivamente, em relação ao primeiro ano (Tabela 3). A menor produção de castanha no primeiro ano de colheita já era esperada, pois a primeira frutificação do cajueiro-anão-precoce é pouco significativa. Contudo, ao contrário do previsto, observou-se uma redução média de 12,5% na produção do terceiro ano em relação ao segundo ano. Quando se comparam as produções obtidas nos tratamentos dentro do segundo e terceiro ano observa-se que esse decréscimo foi mais acentuado nas plantas cultivadas sob sequeiro (41,3%), evidenciando a ação negativa de fatores climáticos sobre a produção no terceiro ano. Com efeito, a análise dos valores mensais de precipitação pluvial (Tabela 1) no período de máxima diferenciação floral e florescimento, que, segundo Frota & Parente (1995), corresponde aos meses de junho a setembro, mostrou que a quantidade total de chuvas em 1997 (segundo ano) foi de apenas 16,3 mm, contra 52,4 mm no terceiro ano, equivalente a um acréscimo de 221,5%. Esse aumento na pluviosidade pode ter con-

Tabela 3. Efeito da interação entre regime hídrico e ano de colheita na produção de castanha de caju. Paraipaba, CE, 1999⁽¹⁾.

Regime hídrico ⁽²⁾	1996	1997	1998	Média
·		(kg ha ⁻¹)	
A	803,36a	1.129,35a	663,03b	865,25a
В	906,57a	1.334,27a	1.337,02a	1.192,62a
C	790,82a	1.355,94a	1.225,96a	1.124,24a
D	833,32a	1.136,64a	1.111,31a	1.027,09a
Média	833,52C	1.239,05A	1.084,33B	

⁽¹⁾Médias seguidas pelas mesmas letras, minúsculas na vertical e maiúsculas na horizontal, não diferem entre si pelo teste de Tukey a 5% de probabilidade. (2)A: testemunha; B, C e D: intervalo de irrigação de um, três e cinco dias, respectivamente.

tribuído para a queda de flores e frutos em início de desenvolvimento, afetando negativamente a produção. Venugopal & Khader (1991) e Frota & Parente (1995) afirmaram que o cajueiro necessita de uma estação seca para frutificar normalmente, já que a diferenciação floral ocorre quase sempre no final da estação chuvosa e o florescimento se processa durante os meses secos.

A interação clone x regime hídrico não foi estatisticamente significativa (Tabela 4). Em contraste com esses resultados, Oliveira et al. (1998a), em Mossoró, RN, com os mesmos clones sob condições de irrigação, sugerem que a resposta do cajueiro ao regime hídrico é dependente do genótipo. Vale destacar, entretanto, que esses autores trabalharam com plantas de idade mais avançada, aplicaram um maior volume de água por planta e tipo de irrigação diferente do empregado no presente trabalho que podem ter contribuído para os resultados obtidos. Isto demonstra a necessidade de novas pesquisas para investigar o comportamento fenológico dos diferentes genótipos quando submetidos a períodos intercalados de estresse hídrico e sob condições de manejo distintos.

Os clones CP 09 e CP 1001 apresentaram os maiores rendimentos médios, nos três anos, 52,97% e 34,31% superiores, respectivamente, ao CP 76 (Tabela 5). Comparando os valores médios de produção de castanha oriundos da interação clone x ano de colheita, constatou-se que no primeiro e segundo ano, o CP 09 e o CP 1001 foram superiores ao CP 76 quanto à produção de castanha e que no terceiro ano, o CP 09 destacou-se dos demais.

Quanto à estabilidade entre safras, os clones CP 09 e CP 76 mostraram-se superiores em relação ao

Tabela 4. Produção de castanha em clones de cajueiroanão-precoce sob diferentes regimes hídricos. Paraipaba, CE, 1999⁽¹⁾.

Clone	A	В	С	D
		(kg	ha ⁻¹)	
CP 09	881,63	1.552,11	1.330,59	1.223,54
CP 76	603,71	934,81	948,99	773,07
CP 1001	1.110,40	1.090,94	1.093,14	1.084,66

⁽¹⁾A: testemunha; B, C e D: intervalo de irrigação de um, três e cinco dias, respectivamente; os dados representam médias de três anos.

Tabela 5. Efeito da interação entre clones de cajueiro-anão-precoce e ano de colheita na produção de castanha. Paraipaba, CE, 1999⁽¹⁾.

Clone	1996	1997	1998	Média
		(kg	ha ⁻¹)	
CP 09	901,72a	1.459,50a	1.379,68a	1.246,97a
CP 1001	991,16a	1.320,83a	972,37b	1.094,79a
CP 76	607,67b	936,82b	900,93b	815,15b
Média	833,52C	1.239,05A	1.084,33B	

⁽¹⁾Médias seguidas pelas mesmas letras, minúsculas na vertical e maiúsculas na horizontal, não diferem entre si pelo teste de Tukey a 1% de probabilidade

CP 1001 (Tabela 5). Tal resultado pode ser atribuído à diferença de potencial genético entre os três clones estudados, claramente demonstrado na maior redução de produção do clone CP 1001 entre o segundo e terceiro ano, o que indica ser este genótipo mais afetado pela ocorrência de chuvas nas fases de diferenciação floral e frutificação do que o CP 09 e o CP 76. Comportamento similar foi observado por Oliveira et al. (1996), em Pacajus, CE, e Oliveira et al. (1998b), em Mossoró, RN. Embora o período de avaliação seja insuficiente para permitir inferências sobre uma possível tendência de alternância de produção durante o período experimental, este fato merece atenção e já foi mencionado por Almeida et al. (1998).

Conclusões

- 1. Em relação à produção de castanha, não existe comportamento diferencial dos clones de cajueiro-anão em resposta à irrigação.
- 2. Sob irrigação, os clones CP 09 e CP 76 apresentam maior estabilidade de produção entre safras em relação ao CP 1001.
- 3. O clone CP 76 é menos produtivo do que os clones CP 09 e CP 1001, independentemente do regime hídrico estudado.

Referências

ALMEIDA, F. A. G.; ALMEIDA, F. C. G.; MARTINS JÚNIOR, W.; MENESES JÚNIOR, J.; CARVALHO, P. R. de. Produtividade potencial de plantas enxertadas de cajueiro anão (*Anacardium occidentale* L.) em condições de irrigação. **Revista Brasileira de Fruticultura**, Cruz das Almas, v. 20, n. 3, p. 343-352, 1998.

CRISÓSTOMO, L. A.; OLIVEIRA, V. H.; MIRANDA, F. R.; ROSSETTI, A. G. Efeito de doses crescentes de nitrogênio e de potássio sobre a produtividade de cajueiro anão precoce (CP 76) sob regime de sequeiro e irrigado. Fortaleza: Embrapa-CNPAT, 1998. 5 p. (Pesquisa em Andamento, 28).

DOORENBOS, J.; PRUITT, W. O. Las necesidades de agua de los cultivos. Roma: FAO, 1984. 194 p. (Estudio FAO Riego y Drenaje, 24).

EMBRAPA. Centro Nacional de Pesquisa de Agroindústria Tropical (Fortaleza, CE). **Boletim agroclimatológico 1996**: Estação de Paraipaba, CE. Fortaleza: Embrapa-CNPAT/Funceme/DNOCS, 1998a. 13 p. (Boletim, 1).

EMBRAPA. Centro Nacional de Pesquisa de Agroindústria Tropical (Fortaleza, CE). **Boletim agroclimatológico 1997**: Estação de Paraipaba, CE. Fortaleza: Embrapa-CNPAT/Funceme/DNOCS, 1998b. 13 p. (Boletim, 2).

EMBRAPA. Centro Nacional de Pesquisa de Agroindústria Tropical (Fortaleza, CE). **Boletim agroclimatológico 1998**: Estação de Paraipaba, CE. Fortaleza: Embrapa-CNPAT/Funceme/DNOCS, 1998c. 13 p. (Boletim, 3).

FROTA, P. C. E.; PARENTE, J. I. G. Clima e fenologia. In: ARAÚJO, J. P. P.; SILVA, V. V. (Org.). **Cajucultura**: modernas técnicas de produção. Fortaleza: Embrapa-CNPAT, 1995. p. 43-54.

NAMBIAR, M. C. Cashew. In: ALVIM, P. T.; KOZLOWSKI, T. T. (Ed.). **Ecophysiology of tropical crops**. New York: Academic, 1977. p. 461-477.

OLIVEIRA, V. H.; CRISÓSTOMO, L. A.; MIRANDA, F. R. de; ALMEIDA, J. H. S. Produtividade de clones comerciais de cajueiro anão precoce (*Anacardium occidentale L.*) irrigados no Município de Mossoró RN. Fortaleza: Embrapa-CNPAT, 1998a. 6 p. (Comunicado Técnico, 14).

OLIVEIRA, V. H.; MIRANDA, F. R. de; SANTOS, F. J. S.; SAUNDERS, L. C. U. Distribuição mensal da produção de castanha de clones comerciais de cajueiro anão precoce (*Anacardium occidentale L.*) irrigados no Ceará: 1º ano. Fortaleza: Embrapa-CNPAT, 1998b. 4 p. (Pesquisa em Andamento, 22).

OLIVEIRA, V. H.; PARENTE, J. I. G.; SAUNDERS, L. C. U. Irrigação em cajueiro anão precoce: uma perspectiva promissora. **Revista Frutar**, Fortaleza, v. l, n. l, p. 4-5, 1995.

OLIVEIRA, V. H.; SAUNDERS, L. C. U.; PARENTE, J. I. G.; ALMEIDA, J. I. L.; MONTENEGRO, A. A. T. Comportamento do cajueiro comum e anão precoce

submetidos a diferentes tensões de água no solo. Fortaleza: Embrapa-CNPAT, 1996. 4 p. (Pesquisa em Andamento, 19).

PESSOA, P. F. A. P.; OLIVEIRA, V. H.; SANTOS, F. J. S.; SEMRAU, L. A. S. Análise da viabilidade econômica do cultivo do cajueiro irrigado e sob sequeiro. **Revista Econômica do Nordeste**, Fortaleza, v. 31, n. 2, p. 178-187, 2000.

SAUNDERS, L. C. U.; OLIVEIRA, V. H.; PARENTE, J. I. G. **Irrigação em cajueiro anão precoce**. Fortaleza: Embrapa-CNPAT, 1995. 28 p. (Documentos, 16).

VENUGOPAL, K.; KHADER, K. B. Effect of soil and climate on the productivity of cashew. **Indian Cashew Journal**, Cochin, v. 20, p. 19-24, 1991.