Predição genômica com o modelo aditivo-dominante por métodos de redução de dimensionalidade
DOI:
https://doi.org/10.1590/S1678-3921.pab2020.v55.26824Palavras-chave:
efeito de dominância, G-BLUP, regressão via componentes independentes, quadrados mínimos parciais, regressão via componentes principaisResumo
O objetivo deste trabalho foi avaliar a aplicação de diferentes métodos de redução de dimensionalidade no modelo aditivo-dominante e compará-los ao método genômico da melhor predição linear não viesada (G-BLUP). Os métodos de redução avaliados foram: regressão via componentes principais (PCR), quadrados mínimos parciais (PLS) e regressão via componentes independentes (ICR). Utilizou-se um conjunto de dados simulados composto por 1.000 indivíduos e 2.000 polimorfismos de nucleotídeo único, analisados em quatro cenários: dois níveis de herdabilidade x duas heranças genéticas. Para auxiliar na escolha do número de componentes, os resultados foram avaliados quanto às informações genômicas aditiva, dominante e total. De modo geral, a PCR apresentou maiores valores de acurácia em comparação aos demais métodos. No entanto, nenhuma das metodologias consegue capturar as herdabilidades genômicas reais e todas apresentam estimativas viesadas, tendo subestimado ou superestimado os valores genéticos genômicos. Para a estimação simultânea dos efeitos de marcadores aditivos e devidos à dominância, a melhor alternativa é a escolha do número de componentes que conduz o valor genômico devido à dominância à maior acurácia.