Methods of longitudinal data analysis for the genetic improvement of sugar apple

Authors

  • Keny Henrique Mariguele Universidade Federal de Viçosa. 36570-000 - Vicosa, MG - Brasil
  • Marcos Deon Vilela de Resende Empresa Brasileira de Pesquisa Agropecuária. Estrada da Ribeira, Km 111 83411-000 - Colombo, PR - Brasil - Caixa-Postal: 319
  • José Marcelo Soriano Viana Universidade Federal de Viçosa (UFV), Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, CEP 36570-000 Viçosa, MG.
  • Fabyano Fonseca e Silva UFV, Departamento de Estatística Av P.H. Rolfs, Campus da UFV Centro 36571-000 - Vicosa, MG - Brasil
  • Paulo Sérgio Lima de Silva Universidade Federal Rural do Semi-Árido, Departamento de Ciências Vegetais, BR 110, Km 47, Bairro Presidente Costa e Silva, CEP 59625-900 Mossoró, RN.
  • Filipe de Castro Knop UFV, Departamento de Fitotecnia.

DOI:

https://doi.org/10.1590/S1678-3921.pab2011.v46.11046

Keywords:

Annona squamosa, Akaike, variance and covariance matrix, repeated measure, REML/BLUP, genetic value

Abstract

The objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit.

Author Biographies

Keny Henrique Mariguele, Universidade Federal de Viçosa. 36570-000 - Vicosa, MG - Brasil

http://lattes.cnpq.br/7420915125213183

Marcos Deon Vilela de Resende, Empresa Brasileira de Pesquisa Agropecuária. Estrada da Ribeira, Km 111 83411-000 - Colombo, PR - Brasil - Caixa-Postal: 319

http://lattes.cnpq.br/3428847301560726

José Marcelo Soriano Viana, Universidade Federal de Viçosa (UFV), Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, CEP 36570-000 Viçosa, MG.

http://lattes.cnpq.br/3125669481610550

Fabyano Fonseca e Silva, UFV, Departamento de Estatística Av P.H. Rolfs, Campus da UFV Centro 36571-000 - Vicosa, MG - Brasil

http://lattes.cnpq.br/6661948983681991

Filipe de Castro Knop, UFV, Departamento de Fitotecnia.

http://lattes.cnpq.br/0423521063138464

Published

2012-02-10

How to Cite

Mariguele, K. H., de Resende, M. D. V., Viana, J. M. S., Silva, F. F. e, de Silva, P. S. L., & Knop, F. de C. (2012). Methods of longitudinal data analysis for the genetic improvement of sugar apple. Pesquisa Agropecuaria Brasileira, 46(12), 1657–1664. https://doi.org/10.1590/S1678-3921.pab2011.v46.11046

Issue

Section

QUANTITATIVE METHODS