Modis vegetation indices applied to soybean area discrimination

Authors

  • Joel Risso INPE
  • Rodrigo Rizzi UFPEL
  • Bernardo Friedrich Theodor Rudorff INPE
  • Marcos Adami INPE
  • Yosio Edemir Shimabukuro INPE
  • Antonio Roberto Formaggio INPE
  • Rui Dalla Valle Epiphanio

DOI:

https://doi.org/10.1590/S1678-3921.pab2012.v47.11222

Keywords:

multi‑temporal image classification, Modis data, crop area estimates, satellite images, remote sensing.

Abstract

The objective of this work was to evaluate the performance of the enhanced vegetation index (EVI) and the normalized difference vegetation index (NDVI) – both from the moderate resolution imaging spectroradiometer (Modis) sensor – to discriminate soybean cultivated areas from sugarcane, pasture, cerrado, and forest ones in the state of Mato Grosso, Brazil. Images acquired during two periods were used: off-season and maximum soybean crop development. For each analyzed class, 31 samples were selected from reference maps, and the differences in the values of each soybean vegetation index were evaluated against the other classes using the Tukey‑Kramer test. Afterwards, the differences between the vegetation indices were assessed using the Wilcoxon paired test. NDVI performed best in discriminating soybean areas during the off-season period, particularly when using images acquired from day of year (DOY) 161 to 273, whereas EVI performed best during maximum crop development, particularly when using images from DOY 353 to 33. Therefore, best classification results for soybean in the state of Mato Grosso can be achieved by coupling Modis NDVI images acquired during off-season period and EVI images acquired during the maximum crop development period.

Author Biographies

Joel Risso, INPE

Engenheiro Agrícola. Atualmente é especialista em geoprocessamento pela FUNCATE e cursa mestrado em Sensoriamento Remoto no INPE.

Rodrigo Rizzi, UFPEL

Engenheiro Agrônomo e Dr. em Sensoriamento Remoto. Atualmente é professor adjunto na UFPEL.

Bernardo Friedrich Theodor Rudorff, INPE

Engenheiro Agrônomo e Dr. em Agronomia. Atualmente é pesquisador titular do INPE.

Marcos Adami, INPE

Economista e Dr. em Sensoriamento Remoto.

Yosio Edemir Shimabukuro, INPE

Engenheiro Forestal e Dr. em Sensoriamento Remoto e Ciências Florestais. Atualmente é Pesquisador titular do INPE.

Antonio Roberto Formaggio, INPE

Engenheiro Agrônomo e Dr. em Agronomia. Atualmente é pesquisador titular do INPE.

Rui Dalla Valle Epiphanio

Engenheiro Agrônomo e Me. em Sensoriamento Remoto.

Published

2012-11-09

How to Cite

Risso, J., Rizzi, R., Rudorff, B. F. T., Adami, M., Shimabukuro, Y. E., Formaggio, A. R., & Epiphanio, R. D. V. (2012). Modis vegetation indices applied to soybean area discrimination. Pesquisa Agropecuaria Brasileira, 47(9), 1317–1326. https://doi.org/10.1590/S1678-3921.pab2012.v47.11222