Semiquantitative and quantitative approaches for soil texture evaluation through VIS‑NIR‑SWIR bidirectional reflectance spectroscopy

Authors

  • Marston Héracles Domingues Franceschini Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo
  • José Alexandre M. Demattê Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo
  • Marcus Vinicius Sato Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo
  • Luiz Eduardo Vicente Embrapa Monitoramento por Satélite
  • Célia Regina Grego Embrapa Monitoramento por Satélite

DOI:

https://doi.org/10.1590/S1678-3921.pab2013.v48.18186

Keywords:

soil granulometric distribution, reflectance spectroscopy, multivariate statistics, pedometrics, proximal sensing

Abstract

The objective of this work was to evaluate the potential of VIS‑NIR‑SWIR reflectance spectroscopy for the characterization of soil particle-size distribution of samples from different textural classes, and to obtain models to predict clay, silt, and sand contents in the soil. A representative sample set of Oxisols and Ultisols from five locations in Mato Grosso do Sul state, Brazil, were used. Visible and near‑infrared to short‑wave infrared (from 350 to 2,500 nm) spectra of the samples were obtained and analyzed. Principal component analysis (PCA), fuzzy c‑means cluster analysis, multinomial logistic regression (MLR), and partial least squares regression were used. Characteristic spectra for the different soil texture classes and segregation of samples from texture classes and from sampling sites with distinct characteristics, through PCA, fuzzy c‑means, and RLM, show the semiquantitative potential of the VIS‑NIR‑SWIR reflectance data. Satisfactory quantification was obtained for clay (R²=0.92, RPD=3.59), silt (R²=0.80, RPD=2.15), and sand (R²=0.87, RPD=2.62). The reflectance spectroscopy techniques can help to assess soil texture and soil spacial variability with semiquantitative or quantitative methodologies.

Author Biographies

Marston Héracles Domingues Franceschini, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711174A4

José Alexandre M. Demattê, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4728013E1

Marcus Vinicius Sato, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4415922D3

Luiz Eduardo Vicente, Embrapa Monitoramento por Satélite

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4266609D3

Célia Regina Grego, Embrapa Monitoramento por Satélite

http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794099A6

Published

2014-03-18

How to Cite

Franceschini, M. H. D., Demattê, J. A. M., Sato, M. V., Vicente, L. E., & Grego, C. R. (2014). Semiquantitative and quantitative approaches for soil texture evaluation through VIS‑NIR‑SWIR bidirectional reflectance spectroscopy. Pesquisa Agropecuaria Brasileira, 48(12), 1569–1582. https://doi.org/10.1590/S1678-3921.pab2013.v48.18186

Issue

Section

SOIL SCIENCE