Data mining to infer soil-landscape relationships in digital soil mapping

Authors

  • Rafael Castro Crivelenti Instituto Agronômico de Campinas
  • Ricardo Marques Coelho Instituto Agronômico de Campinas
  • Samuel Fernando Adami Instituto Agronômico de Campinas
  • Stanley Robson de Medeiros Oliveira Embrapa Informática Agropecuária

DOI:

https://doi.org/10.1590/S1678-3921.pab2009.v44.2215

Keywords:

decision trees, soil survey, geomorphometric parameters, geographic information system

Abstract

The objective of this work was to develop a methodology for digital soil mapping at a 1:100,000 scale by applying data mining techniques to preexisting relief descriptors and data from pedological and geological maps. A digital database was created from topographic and thematic maps, and allowed the generation of a digital elevation model (DEM) of the Dois Córregos (SP, Brazil) sheet (1:50,000 scale). The slope gradient, slope profile, contour profile, basin contributing area, and diagonal distance to drainage geomorphometric parameters were extracted from the DEM. The matrix which associated this georeferred data was analyzed by means of decision trees within the Weka machine-learning environment, and a model for soil mapping unit prediction was generated. The overall model accuracy increased from 54 to 61% when soil classes with no chances of being predicted were excluded. The association of data mining techniques with geographical information systems produced digital soil maps feasible to be used in studies requiring less detail than those made with the original reference soil maps.

Author Biographies

Rafael Castro Crivelenti, Instituto Agronômico de Campinas

Centro de Solos e Recursos Ambientais. Área de Gestão dos Recursos Agroambientais.

Ricardo Marques Coelho, Instituto Agronômico de Campinas

Centro de Solos e Recursos Ambientais. Área de Pedologia.

Samuel Fernando Adami, Instituto Agronômico de Campinas

Centro de Solos e Recursos Ambientais. Área de Geoprocessamento.

Stanley Robson de Medeiros Oliveira, Embrapa Informática Agropecuária

Laboratório de Inteligência Computacional.

Published

2010-12-22

How to Cite

Crivelenti, R. C., Coelho, R. M., Adami, S. F., & Oliveira, S. R. de M. (2010). Data mining to infer soil-landscape relationships in digital soil mapping. Pesquisa Agropecuaria Brasileira, 44(12), 1707–1715. https://doi.org/10.1590/S1678-3921.pab2009.v44.2215

Issue

Section

SOIL SCIENCE