Bayesian inference for the fitting of dry matter accumulation curves in garlic plants

Authors

  • Leandro Roberto de Macedo Universidade Federal de Juiz de Fora, Departamento de Economia, Campus Governador Valadares, Avenida Dr. Raimundo M. Rezende, no 330, Centro, CEP 35010-177 Governador Valadares, MG.
  • Paulo Roberto Cecon Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Fabyano Fonseca e Silva Universidade Federal de Viçosa (UFV), Departamento de Zootecnia, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Moysés Nascimento Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Guilherme Alves Puiatti Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Ana Carolina Ribeiro de Oliveira Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Mário Puiatti Universidade Federal de Viçosa (UFV), Departamento de Fitotecnia, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

DOI:

https://doi.org/10.1590/S1678-3921.pab2017.v52.23927

Keywords:

Allium sativum, cluster analysis, multivariate clustering curves, nonlinear models

Abstract

The objective of this work was to identify nonlinear regression models that best describe dry matter accumulation curves over time, in garlic (Allium sativum) accessions, using Bayesian and frequentist approaches. Multivariate cluster analyses were made to group similar accessions according to the estimates of the parameters with biological interpretation (β1 and β3). In order to verify if the obtained groups were equal, statistical tests were applied to assess the parameter equality of the representative curves of each group. Thirty garlic accessions were used, which are kept by the vegetable germplasm bank of Universidade Federal de Viçosa, Brazil. The logistic model was the one that fit best to data in both approaches. Parameter estimates of this model were subjected to the cluster analysis using Ward’s algorithm, and the generalized Mahalanobis distance was used as a measure of dissimilarity. The optimal number of groups, according to the Mojena method, was three and four, for the frequentist and Bayesian approaches, respectively. Hypothesis tests for the parameter equality from estimated curves, for each identified group, indicated that both approaches highlight the differences between the accessions identified in the cluster analysis. Therefore, both approaches are recommended for this kind of study.

Author Biographies

Leandro Roberto de Macedo, Universidade Federal de Juiz de Fora, Departamento de Economia, Campus Governador Valadares, Avenida Dr. Raimundo M. Rezende, no 330, Centro, CEP 35010-177 Governador Valadares, MG.

Paulo Roberto Cecon, Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/4525265173613927

Fabyano Fonseca e Silva, Universidade Federal de Viçosa (UFV), Departamento de Zootecnia, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/6661948983681991

Moysés Nascimento, Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/6544887498494945

Guilherme Alves Puiatti, Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/3292690471132609

Ana Carolina Ribeiro de Oliveira, Universidade Federal de Viçosa (UFV), Departamento de Estatística, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/0231423029429573

Mário Puiatti, Universidade Federal de Viçosa (UFV), Departamento de Fitotecnia, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/5198358695574641

Downloads

Published

2017-09-12

How to Cite

Macedo, L. R. de, Cecon, P. R., Silva, F. F. e, Nascimento, M., Puiatti, G. A., Oliveira, A. C. R. de, & Puiatti, M. (2017). Bayesian inference for the fitting of dry matter accumulation curves in garlic plants. Pesquisa Agropecuaria Brasileira, 52(8), 572–581. https://doi.org/10.1590/S1678-3921.pab2017.v52.23927

Issue

Section

CROP SCIENCE