Prediction of the nutritional value of grass species in the semiarid region by repeatability analysis

Authors

  • Janerson José Coêlho Waterford Institute of Technology, Department of Science, Cork Road, Waterford, Ireland.
  • Alexandre Carneiro Leão de Mello Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.
  • Mércia Virginia Ferreira dos Santos Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.
  • José Carlos Batista Dubeux Junior University of Florida, North Florida Research & Education Center, 155 Research Road, 32351, Quincy, FL, USA.
  • Marcio Vieira da Cunha Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.
  • Mário de Andrade Lira Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.

DOI:

https://doi.org/10.1590/S1678-3921.pab2018.v53.25401

Keywords:

chemical composition, IVDMD, sampling, warm-season grasses

Abstract

The objective of this work was to estimate the repeatability (r) and the number of samples required to measure the nutritional value of four warm-season forage grasses growing in a semiarid region. The grasses evaluated were Urochloa mosambicensis, Cenchrus ciliaris, Digitaria pentzii, and Megathyrsus maximus. Evaluations occurred under two forage management conditions: stockpiling and grazing. Hand‑plucked forage samples were analyzed for dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, and in vitro DM digestibility (IVDMD). Four methods were used to estimate r and the number of samples required: analysis of variance, method of principal components based on the covariance (PCCOV) and the correlation (PCCOR) matrices, and structural analysis (EVCOR). Species were compared by the probability of the difference using the t-test. The method PCCOV presents the highest coefficient of repeatability and, therefore, a lower number of samples required. Lignin is the trait that have the highest number of samples required. In terms of qualitative traits, D. pentzii and M. maximus show the best forage qualities among the species evaluated.

Author Biographies

Alexandre Carneiro Leão de Mello, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.

http://lattes.cnpq.br/7703594344797645

Mércia Virginia Ferreira dos Santos, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.

http://lattes.cnpq.br/9565465836878202

José Carlos Batista Dubeux Junior, University of Florida, North Florida Research & Education Center, 155 Research Road, 32351, Quincy, FL, USA.

http://lattes.cnpq.br/1270836627145510

Marcio Vieira da Cunha, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.

http://lattes.cnpq.br/8936474723708253

Mário de Andrade Lira, Universidade Federal Rural de Pernambuco (UFRPE), Rua Dom Manoel de Medeiros, s/no, Dois Irmãos, CEP 52171-900 Recife, PE.

http://lattes.cnpq.br/8556313890479383

Downloads

Published

2018-05-08

How to Cite

Coêlho, J. J., Mello, A. C. L. de, dos Santos, M. V. F., Dubeux Junior, J. C. B., Cunha, M. V. da, & Lira, M. de A. (2018). Prediction of the nutritional value of grass species in the semiarid region by repeatability analysis. Pesquisa Agropecuaria Brasileira, 53(3), 378–385. https://doi.org/10.1590/S1678-3921.pab2018.v53.25401

Issue

Section

ANIMAL SCIENCE