Bayesian approach, traditional method, and mixed models for multienvironment trials of soybean

Authors

  • Alysson Jalles da Silva Nova América Agrícola Ltda., Fazenda Nova América, s/no, Água da Aldeia, CEP 19820-000 Tarumã, SP.
  • Adhemar Sanches Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Professor Paulo Donato Castelane, s/no, Vila Industrial, CEP 14884-900 Jaboticabal, SP.
  • Andréa Carla Bastos Andrade Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Gustavo Hugo Ferreira de Oliveira Universidade Federal de Sergipe, Núcleo de Graduação de Agronomia, Campus do Sertão, Rodovia Engenheiro Jorge Neto, km 3, Silos, CEP 49680-000 Nossa Senhora da Glória, SE.
  • Antonio Orlando Di Mauro Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Professor Paulo Donato Castelane, s/no, Vila Industrial, CEP 14884-900 Jaboticabal, SP.

DOI:

https://doi.org/10.1590/S1678-3921.pab2018.v53.25980

Keywords:

Glycine max, mathematical modeling, prior distribution in plant breeding

Abstract

The objective of this work was to compare the Bayesian approach and the frequentist methods to estimate means and genetic parameters in soybean multienvironment trials. Fifty-one soybean lines and four controls were evaluated in a randomized complete block design, in six environments, with three replicates, and soybean grain yield was determined. The half-normal prior and uniform distributions were used in combination with parameters obtained from data of 18 genotypes collected in previous and related experiments. The genotypic values of the genotypes of high- and low-grain yield, clustered by the Bayesian approach, differed from the means obtained by the frequentist inference. Soybean assessed through the Bayesian approach showed genetic parameter values of the mixed model (REML/Blup) close to those of the following variables: mean heritability (h2mg), accuracy of genotype selection (Acgen), coefficient of genetic variation (CVgi%), and coefficient of environmental variation (CVe%). Therefore, the mixed model methodology and the Bayesian approach lead to similar results for genetic parameters in multienvironment trials.

Author Biographies

Alysson Jalles da Silva, Nova América Agrícola Ltda., Fazenda Nova América, s/no, Água da Aldeia, CEP 19820-000 Tarumã, SP.

http://lattes.cnpq.br/9416510027049000

Adhemar Sanches, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Professor Paulo Donato Castelane, s/no, Vila Industrial, CEP 14884-900 Jaboticabal, SP.

http://lattes.cnpq.br/1162137102390183

Andréa Carla Bastos Andrade, Universidade Federal de Viçosa, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.

http://lattes.cnpq.br/4343912395845374

Gustavo Hugo Ferreira de Oliveira, Universidade Federal de Sergipe, Núcleo de Graduação de Agronomia, Campus do Sertão, Rodovia Engenheiro Jorge Neto, km 3, Silos, CEP 49680-000 Nossa Senhora da Glória, SE.

http://lattes.cnpq.br/7634952167645542

Antonio Orlando Di Mauro, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Professor Paulo Donato Castelane, s/no, Vila Industrial, CEP 14884-900 Jaboticabal, SP.

http://lattes.cnpq.br/1275652518822095

Downloads

Published

2018-11-26

How to Cite

Silva, A. J. da, Sanches, A., Andrade, A. C. B., Oliveira, G. H. F. de, & Di Mauro, A. O. (2018). Bayesian approach, traditional method, and mixed models for multienvironment trials of soybean. Pesquisa Agropecuaria Brasileira, 53(10), 1093–1100. https://doi.org/10.1590/S1678-3921.pab2018.v53.25980

Issue

Section

STATISTICS