Multitemporal variables for the mapping of coffee cultivation areas

Authors

  • Carolina Gusmão Souza Universidade Estadual do Sudoeste da Bahia, Departamento de Ciências Exatas e Naturais, CEP 45700-000, Itapetinga, BA.
  • Tássia Borges Arantes Universidade Federal de Lavras, Departamento de Ciências Florestais, Caixa Postal 3037, CEP 37200-000 Lavras, MG.
  • Luis Marcelo Tavares de Carvalho Universidade Federal de Lavras, Departamento de Ciências Florestais, Caixa Postal 3037, CEP 37200-000 Lavras, MG.
  • Luis Marcelo Tavares de Carvalho Universidade Federal de Lavras, Departamento de Ciências Florestais, Caixa Postal 3037, CEP 37200-000 Lavras, MG.
  • Polyanne Aguiar Universidade Federal de Lavras, Departamento de Ciências Florestais, Caixa Postal 3037, CEP 37200-000 Lavras, MG.

DOI:

https://doi.org/10.1590/S1678-3921.pab2019.v54.26560

Keywords:

BFAST, classification, MODIS, NDVI, remote sensing, R package greenbrown

Abstract

The objective of this work was to propose a new methodology for mapping coffee cropping areas that includes multitemporal data as input parameters in the classification process, by using the Landsat TM NDVI time series, together with an object-oriented classification approach. The algorithm BFAST was used to analyze coffee, pasture, and native vegetation temporal profiles, allied to a geographic object-based image analysis (GEOBIA) for mapping. The following multitemporal variables derived from the R package greenbrown were used for classification: mean, trend, and seasonality. The results showed that coffee, pasture, and native vegetation have different temporal behaviors, which corroborates the use of these data as input variables for mapping. The classifications using temporal variables, associated with spectral data, achieved high-global accuracy rates with 93% hit. When using only temporal data, ratings also showed a hit percentage above 80% accuracy. Data derived from Landsat TM time series are efficient for mapping coffee cropping areas, reducing confusion between targets and making the classification process more accurate, contributing to a correct characterization and mapping of objects derived from a RapidEye image, with a high spatial solution.

Downloads

Published

2019-09-25

How to Cite

Souza, C. G., Arantes, T. B., de Carvalho, L. M. T., de Carvalho, L. M. T., & Aguiar, P. (2019). Multitemporal variables for the mapping of coffee cultivation areas. Pesquisa Agropecuaria Brasileira, 54(X), e00017. https://doi.org/10.1590/S1678-3921.pab2019.v54.26560