Prediction of soil classes in a complex landscape in Southern Brazil

Authors

  • Jean Michel Moura-Bueno Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Solos, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
  • Ricardo Simão Diniz Dalmolin Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Solos, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
  • Taciara Zborowski Horst-Heinen Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Solos, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
  • Luciano Campos Cancian Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Solos, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
  • Ricardo Bergamo Schenato Universidade Federal de Santa Maria, Centro de Ciências Rurais, Departamento de Solos, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, CEP 97105-900 Santa Maria, RS, Brazil.
  • André Carnieletto Dotto Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciência do Solo, Avenida Pádua Dias, no 11, Caixa Postal 9, CEP 13418-900 Piracicaba, SP, Brazil.
  • Carlos Alberto Flores Embrapa Clima Temperado, BR-392, Km 78, 9º Distrito, Monte Bonito, Caixa Postal 403, CEP 96010-971 Pelotas, RS, Brazil.

DOI:

https://doi.org/10.1590/S1678-3921.pab2019.v54.26607

Keywords:

digital soil mapping, pedometry, predictive covariates, predictive models, soil-landscape relationship

Abstract

The objective of this work was to evaluate the use of covariate selection by expert knowledge on the performance of soil class predictive models in a complex landscape, in order to identify the best predictive model for digital soil mapping in the Southern region of Brazil. A total of 164 points were sampled in the field using the conditioned Latin hypercube, considering the covariates elevation, slope, and aspect. From the digital elevation model, environmental covariates were extracted, composing three sets, made up of: 21 covariates, covariates after the exclusion of the multicollinear ones, and covariates chosen by expert knowledge. Prediction was performed with the following models: decision tree, random forest, multiple logistic regression, and support vector machine. The accuracy of the models was evaluated by the kappa index (K), general accuracy (GA), and class accuracy. The prediction models were sensitive to the disproportionate sampling of soil classes. The best predicted map achieved a GA of 71% and K of 0.59. The use of the covariate set chosen by expert knowledge improves model performance in predicting soil classes in a complex landscape, and random forest is the best model for the spatial prediction of soil classes.

Downloads

Published

2019-11-04

How to Cite

Moura-Bueno, J. M., Dalmolin, R. S. D., Horst-Heinen, T. Z., Cancian, L. C., Schenato, R. B., Dotto, A. C., & Flores, C. A. (2019). Prediction of soil classes in a complex landscape in Southern Brazil. Pesquisa Agropecuaria Brasileira, 54(X), e00420. https://doi.org/10.1590/S1678-3921.pab2019.v54.26607