Strategic positioning of soybean based on the agronomic ideotype and on fixed and mixed multivariate models

Authors

  • Kassiana Kehl Fundação Pró-Sementes, Rua Diogo de Oliveira, no 640, Boqueirão, CEP 99025-130 Passo Fundo, RS.
  • Ivan Ricardo Carvalho Universidade Regional do Noroeste do Rio Grande do Sul, Departamento de Estudos Agrários, Rua do Comércio, no 3.000, Bairro Universitário, CEP 98700-000 Ijuí, RS.
  • Deivid Sacon Universidade Federal de Viçosa, Departamento de Agronomia, Campus Universitário, Avenida P.H. Rolfs, s/no, CEP 36570-900 Viçosa, MG.
  • Mauro Antonio Rizzardi Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Campus I, BR 285, Km 292,7, São José, CEP 99052-900 Passo Fundo, RS.
  • Nadia Canali Langaro Universidade de Passo Fundo, Faculdade de Agronomia e Medicina Veterinária, Campus I, BR 285, Km 292,7, São José, CEP 99052-900 Passo Fundo, RS.
  • Murilo Vieira Loro Universidade Federal de Santa Maria, Centro de Ciência Rurais, Departamento de Fitotecnia, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, Prédio 77, CEP 97105-900 Santa Maria, RS.
  • Natã Balssan Moura Universidade Federal de Santa Maria, Centro de Ciência Rurais, Departamento de Engenharia Rural, Avenida Roraima, no 1.000, Cidade Universitária, Camobi, Prédio 42, CEP 97105-900 Santa Maria, RS.
  • Francine Lautenchleger Universidade do Centro-Oeste, Setor de Ciências Agrárias e Ambientais, Alameda Élio Antonio Dalla Vecchia, no 838, Vila Carli, CEP 85040-167 Guarapuava, PR.

DOI:

https://doi.org/10.1590/S1678-3921.pab2022.v57.27087

Keywords:

Glycine max, breeding, genotype x environment interaction, selection

Abstract

The objective of this work was to decompose the variations of the genotype × environment interaction through fixed multivariate models, as well as to understand the genetic variations through mixed models, for the estimation and prediction of the genetic value of soybean (Glycine max) genotypes in the state of Rio Grande do Sul, Brazil. Tests were carried out during the 2016/2017, 2017/2018, and 2018/2019 crop seasons in different municipalities in six regions of the state, using the additive main effects and multiplicative interaction (AMMI) and genotype main effects + genotype-by-environment interaction (GGE) models. The genotypes were also evaluated using an index that allows weighting between mean performance and stability (WAASBY) and by the restricted maximum likelihood (REML) and the best linear unbiased prediction (BLUP) models. The used experimental design was randomized complete blocks (18 environments x 12 genotypes), with three replicates. The best performing genotypes in favorable environments are: 'BMX Valente RR', 'BMX Alvo RR', 'NS 5959 IPRO', 'DM 5958RSF IPRO', and 'BMX Ativa RR'. The favorable environments are the 2017/2018 season in the municipality of Bagé and the 2016/2017 season in the municipalities of São Luiz Gonzaga and Cachoeira do Sul, where higher grain yields were obtained. The genotypes that show excellent performance in unfavorable environments are cultivars BMX Ativa RR, DM 5958RSF IPRO, NS 5959 IPRO, and TMG 7262 RR. The 2016/2017 season is considered unfavorable in the municipalities of São Luiz Gonzaga and Cachoeira do Sul. The AMMI, GGE, and WAASBY or BLUP models for genotype selection must be used simultaneously.

Downloads

Published

2022-07-22

How to Cite

Kehl, K., Carvalho, I. R., Sacon, D., Rizzardi, M. A., Langaro, N. C., Loro, M. V., … Lautenchleger, F. (2022). Strategic positioning of soybean based on the agronomic ideotype and on fixed and mixed multivariate models. Pesquisa Agropecuaria Brasileira, 57(Z), e02702. https://doi.org/10.1590/S1678-3921.pab2022.v57.27087