Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes

Authors

  • Ludimila Geiciane de Sá Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Avenida Universitária, no 1.000, Bairro Universitário, CEP 39404-547 Montes Claros, MG.
  • Alcinei Mistico Azevedo Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Avenida Universitária, no 1.000, Bairro Universitário, CEP 39404-547 Montes Claros, MG.
  • Carlos Juliano Brant Albuquerque Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Avenida Universitária, no 1.000, Bairro Universitário, CEP 39404-547 Montes Claros, MG.
  • Nermy Ribeiro Valadares Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Avenida Universitária, no 1.000, Bairro Universitário, CEP 39404-547 Montes Claros, MG.
  • Orlando Gonçalves Brito Universidade Federal de Lavras, Aquenta Sol, CEP 37200-900 Lavras, MG.
  • Ana Clara Gonçalves Fernandes Universidade Federal de Minas Gerais, Instituto de Ciências Agrárias, Avenida Universitária, no 1.000, Bairro Universitário, CEP 39404-547 Montes Claros, MG
  • Ignacio Aspiazú Universidade Estadual de Montes Claros, Campus Janaúba, Avenida Reinaldo Viana, no 2.630, CEP 39440-000 Janaúba, MG.

DOI:

https://doi.org/10.1590/S1678-3921.pab2022.v57.27089

Keywords:

Glycine max, artificial neural networks, multivariate analysis, plant breeding

Abstract

The objective of this work was to evaluate the genetic dissimilarity between soybean cultivars and genotypes for the selection of parents, as well as to propose a new method for using Kohonen’s self-organizing maps (SOMs) and to test its efficiency through Anderson’s discriminant analysis. The morphoagronomic descriptors of soybean cultivars and genotypes were evaluated. For data analysis, SOM-type artificial neural networks were used. The proposed method allowed the determination of the best network architecture in a nonsubjective way. Furthermore, at the beginning of training, it was possible to mitigate the randomness effect of the synaptic weights on the formed clusters. Six dissimilar clusters were formed; therefore, there is genetic dissimilarity between soybean cultivars and genotypes. Cultivars C25, C8, and C13 can be combined with C36, C31, C32, and C33 because they show good yield-related attributes and high dissimilarity. The proposed methodology is advantageous in comparison with the use of traditional SOMs, besides being efficient due to clustering consistency according to Anderson’s discriminant analysis.

Downloads

Published

2022-07-22

How to Cite

Sá, L. G. de, Azevedo, A. M., Albuquerque, C. J. B., Valadares, N. R., Brito, O. G., Fernandes, A. C. G., & Aspiazú, I. (2022). Kohonen’s self-organizing maps for the study of genetic dissimilarity among soybean cultivars and genotypes. Pesquisa Agropecuaria Brasileira, 57(Z), e02722. https://doi.org/10.1590/S1678-3921.pab2022.v57.27089