Geostatistics and multivariate analysis to determine experimental blocks for sugarcane

Authors

  • Gustavo Henrique da Silva Universidade Federal de Viçosa, Departamento de Estatística, Avenida Peter Henry Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Kaléo Dias Pereira Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Avenida Purdue, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Antonio Policarpo Souza Carneiro Universidade Federal de Viçosa, Departamento de Estatística, Avenida Peter Henry Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Matheus de Paula Ferreira Universidade Federal de Viçosa, Departamento de Estatística, Avenida Peter Henry Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Gérson Rodrigues dos Santos Universidade Federal de Viçosa, Departamento de Estatística, Avenida Peter Henry Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Luiz Alexandre Peternelli Universidade Federal de Viçosa, Departamento de Estatística, Avenida Peter Henry Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.

Keywords:

experimental design, field experimentation, kriging, principal component analysis, spatial variations

Abstract

The objective of this work was to define experimental blocks for sugarcane experiments using geostatistical techniques, principal component analysis, and clustering techniques applied to soil properties. For this, data of soil chemical properties from a sugarcane experiment were used. Geostatistical techniques were applied to identify the spatial variability of these properties and to estimate the values for non-sampled locations through kriging. The principal components analysis was used for dimensional reduction, and, with the new variables obtained, the cluster analysis was performed using the k-means method to determine the experimental blocks with two to five replicates. Of the 12 analyzed variables, 10 showed spatial dependence. The principal component analysis allowed reducing the dimensionality of the data to two variables, which explained 82.27% of total variance. The obtained blocks presented irregular polygonal shapes, with different formats and sizes, and some of them showed discontinuities. The proposed methodology has the potential to identify more uniform areas in terms of soil chemical properties to allocate experimental blocks for sugarcane.

Downloads

Published

2024-09-02

How to Cite

da Silva, G. H., Pereira, K. D., Carneiro, A. P. S., Ferreira, M. de P., Santos, G. R. dos, & Peternelli, L. A. (2024). Geostatistics and multivariate analysis to determine experimental blocks for sugarcane. Pesquisa Agropecuaria Brasileira, 59(AB), e03373. Retrieved from https://apct.sede.embrapa.br/pab/article/view/27748