Incorporating prior knowledge into Bayesian models for genetic evaluation in soybean breeding

Authors

  • Jeniffer Santana Pinto Coelho Evangelista Universidade Federal de Viçosa, Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Igor Ferreira Coelho Universidade Federal de Viçosa, Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Marco Antônio Peixoto Universidade Federal de Viçosa, Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Rodrigo Silva Alves Universidade Federal de Viçosa, Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Marcos Deon Vilela de Resende Embrapa Café, Parque Estação Biológica, Avenida W3 Norte (Final), CEP 70770-901 Brasília, DF.
  • Felipe Lopes da Silva Universidade Federal de Viçosa, Departamento de Agronomia, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.
  • Leonardo Lopes Bhering Universidade Federal de Viçosa, Departamento de Biologia Geral, Avenida P.H. Rolfs, s/no, Campus Universitário, CEP 36570-900 Viçosa, MG.

Keywords:

Glycine max, Bayesian inference, Gibbs sampler, HPD, MCMC

Abstract

The objective of this work was to compare the use of noninformative and informative priors in Bayesian models, as well as to evaluate the viability of including informative priors in the estimation of variance components and genetic values in soybean breeding programs. The used phenotypic data refer to the evaluation of 80 soybean genotypes in ten environments over three years. For each evaluated crop year, informative and noninformative priors were used, and the parameters were estimated using the Gibbs sampler algorithm. Parameter estimates from the previous crop year were used as prior information for the next evaluated crop year. The goodness-of-fit was calculated using the deviance information criterion (DIC). Selective accuracy showed the highest values for the models chosen through DIC for both crop years. However, the intervals of the highest posterior density are narrower for all models that adopted informative priors. Adding information into Bayesian inference does not always result in a better model fitting.

Downloads

Published

2024-09-02

How to Cite

Evangelista, J. S. P. C., Coelho, I. F., Peixoto, M. A., Alves, R. S., Resende, M. D. V. de, Silva, F. L. da, & Bhering, L. L. (2024). Incorporating prior knowledge into Bayesian models for genetic evaluation in soybean breeding. Pesquisa Agropecuaria Brasileira, 59(AB), e03557. Retrieved from https://apct.sede.embrapa.br/pab/article/view/27761