Topographic attributes and Landsat7 data in the digital soil mapping using neural networks

Authors

  • Cesar da Silva Chagas Embrapa Solos
  • Elpídio Inácio Fernandes Filho
  • Carlos Antônio Oliveira Vieira
  • Carlos Ernesto Gonçalves Reynaud Schaefer
  • Waldir de Carvalho Júnior

DOI:

https://doi.org/10.1590/S1678-3921.pab2010.v45.3037

Keywords:

terrain attributes, classification of soils, digital elevation model, artificial neural networks

Abstract

The objective of this study was to evaluate discriminant variables in digital soil mapping using artificial neural networks. The topographic attributes elevation, slope, aspect, plan curvature and topographic index, derived from a digital elevation model, and the indexes of clay minerals, iron oxide and normalized difference vegetation, derived from a Landsat7 image, were combined and evaluated for their ability to discriminate soils of an area at the northwest of Rio de Janeiro State. The Java neural simulator and the backpropagation learning algorithm were used. The maps generated by each of the six tested sets of variables were compared with reference points for determining the rating accuracy. This comparison showed that the map produced with the use of all the variables reached a performance (73.81% of agreement) superior to maps produced by other sets of variables. Possible sources of error in the use of this approach are mainly related to the great lithological heterogeneity of the area, which hindered the establishment of a more realistic model of environmental correlation. The approach can help make the soil survey in Brazil faster and less subjective.

Author Biography

Cesar da Silva Chagas, Embrapa Solos

Possui graduação em Agronomia pela Universidade Federal Rural do Rio de Janeiro (1983), mestrado em Agronomia (Solos e Nutrição de Plantas) pela Universidade Federal de Lavras (1994) e doutorado em Agronomia (Solos e Nutrição de Plantas) pela Universidade Federal de Viçosa (2006). Atualmente é pesquisador A da Empresa Brasileira de Pesquisa Agropecuária (Embrapa Solos). Tem experiência na área de Agronomia, com ênfase em Gênese, Morfologia e Classificação dos Solos, Sensoriamento Remoto, Geoprocessamento e Redes Neurais, atuando principalmente nos seguintes temas: Mapeamento Digital de Solos.

Published

2011-01-20

How to Cite

Chagas, C. da S., Filho, E. I. F., Vieira, C. A. O., Schaefer, C. E. G. R., & Júnior, W. de C. (2011). Topographic attributes and Landsat7 data in the digital soil mapping using neural networks. Pesquisa Agropecuaria Brasileira, 45(5), 497–507. https://doi.org/10.1590/S1678-3921.pab2010.v45.3037

Issue

Section

SOIL SCIENCE