Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability

Authors

  • Paulo Eduardo Teodoro Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana
  • Laís Mayara Azevedo Barroso Universidade Federal de Viçosa, Departamento de Estatística
  • Moysés Nascimento Universidade Federal de Viçosa, Departamento de Estatística
  • Francisco Eduardo Torres Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana
  • Edvaldo Sagrilo Embrapa Meio‑Norte
  • Adriano dos Santos Universidade Estadual do Norte Fluminense Darcy Ribeiro
  • Larissa Pereira Ribeiro Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana

DOI:

https://doi.org/10.1590/S1678-3921.pab2015.v50.22133

Keywords:

Vigna unguiculata, artificial intelligence, genotypes x environments interaction

Abstract

The objective of this work was to verify the agreement between artificial neural networks (ANNs) and the Eberhart & Russel method in identifying cowpea (Vigna unguiculata) genotypes with high phenotypic adaptability and stability. The experimental design was in a randomized complete block with four replicates. The treatments consisted of 18 experimental lines and two cowpea cultivars. Four value for cultivation and use trials were conducted in the municipalities of Aquidauana, Chapadão do Sul, and Dourados, in the state of Mato Grosso do Sul, Brazil. Grain yield data were subjected to individual and joint variance analyses. Then, the data were subjected to adaptability and stability analyses through the methods of Eberhart & Russell and ANNs. There was a high agreement between the methods evaluated for discrimination of the phenotypic adaptability of semi‑prostrate cowpea genotypes, indicating that ANNs can be used in breeding programs. In both evaluated methods, the BRS Xiquexique, TE97‑304G‑12, and MNC99‑542F‑5 genotypes are recommended for harsh, general, and favorable environments, respectively, for having grain yield above the overall average of environments and high phenotypic stability.

Author Biographies

Paulo Eduardo Teodoro, Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana

http://lattes.cnpq.br/3731198010625970

Laís Mayara Azevedo Barroso, Universidade Federal de Viçosa, Departamento de Estatística

http://lattes.cnpq.br/8587813175766141

Moysés Nascimento, Universidade Federal de Viçosa, Departamento de Estatística

http://lattes.cnpq.br/6544887498494945

Francisco Eduardo Torres, Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana

http://lattes.cnpq.br/6967277625491348

Edvaldo Sagrilo, Embrapa Meio‑Norte

http://lattes.cnpq.br/5600248433021837

Adriano dos Santos, Universidade Estadual do Norte Fluminense Darcy Ribeiro

http://lattes.cnpq.br/9995968525208764

Larissa Pereira Ribeiro, Universidade Estadual do Mato Grosso do Sul, Campus Aquidauana

http://lattes.cnpq.br/7220634546294640

Published

2015-12-09

How to Cite

Teodoro, P. E., Barroso, L. M. A., Nascimento, M., Torres, F. E., Sagrilo, E., Santos, A. dos, & Ribeiro, L. P. (2015). Artificial neural networks to identify semi‑prostrate cowpea genotypes with high phenotypic adaptability and stability. Pesquisa Agropecuaria Brasileira, 50(11), 1054–1060. https://doi.org/10.1590/S1678-3921.pab2015.v50.22133

Issue

Section

GENETICS